
ON APPROXIMATE DERIVATIVES1 

CHOW, SHU-ER 

1. Introduction and definitions. In the present paper f(x) will 
signify a real, one-valued function defined in the interval I: (a, b). 
All sets we shall have occasion to speak of will be subsets of / . 

The theorem of Denjoy on Dini derivatives, as extended by S. Saks 
[l, ( l ) ] , 2 H. E. Hanson [2], and H. Blumberg [3] to arbitrary func­
t i o n s / ^ ) , is briefly as follows: At almost every point x we have either 
(a) the derivative of f{x) exists and is finite—we shall then say that 
the directional angle of the curve y = ƒ(x) is 0° at x ; or (/3) two oppo­
site derivatives (the lower Dini derivative on one side and the upper 
Dini derivative on the other side) are finite and equal, and the other 
two are ± 00 respectively—we then say that the directional angle is 
180° at x ; or (7) the upper Dini derivatives are + <*> and the lower — 00 
—we then say that the directional angle is 360° at x. 

Another line of generalization is concerned with the use of approxi­
mate derivatives, which we proceed to defi'ne. 

DEFINITION 1. The upper right approximate limit of f(x) at £— 
which we denote by u+{f> £), or simply by u+(£) when there is no 
ambiguity—is the g.l.b. of the (real) numbers k for which the set 

E,[f(x) > k, x > {] 

has zero exterior (metric) density at £. Similarly, the lower right ap­
proximate limit of f(x) at £—denoted by /+(ƒ, £), or /+(£)—is the l.u.b. 
of the numbers k for which the set 

Ex\j{x) <k,x>i] 

has zero exterior density at £. The two left-hand limits, u~(i;) and 
Z~(£), are defined similarly. 

Without reference to the (left or right) direction of approach, we 
define the upper and lower approximate limits oîf(x) at £ respectively 
as 

u(Q = max [**+(£), irft)] , and /(£) = min [/+(£), /-({)].« 

Received by the editors April 1, 1947. 
1 The author wishes to express his gratitude to Professor H. Blumberg, who sug­

gested the application of "the measurable boundaries, " and assisted in the editing. 
2 Numbers in brackets refer to the bibliography at the end of the paper. 
8 The functions u(x) and l(x) are called the "upper" and "lower metric boundaries" 

of f(x) by Prof. Blumberg [3]. 

793 



794 S. E. CHOW [August 

DEFINITION 2. The upper right approximate derivative of fix) at £— 
which we shall denote by A+if, £), or simply by -4+(£)—is the upper 
right approximate limit of the quotient function 

Q(f, t, *) = — • 

We define similarly the other three approximate derivatives, namely, 
the lower right A+(Ç), the upper left 4̂ """(£), and the lower left i4_(£). 

If all these four approximate derivatives are equal, their common 
value is called the approximate derivative of ƒ(#) at £, and denoted by 
A (ft £), or A (£). If, furthermore, -4(f) is finite, ƒ(x) is said to possess 
an approximate derivative, or be approximately derivable at £. 

The approximate derivative, as defined, has been the basis of 
generalizations of Denjoy's theorem by J. C. Burkill and U. S. 
Haslam-Jones (among others). They proved the following result [4, 
(1)]—in which it is apparent what meaning to attach to the phrase, 
"the directional angle with respect to approximate derivation": 

If fix) is measurable, the directional angle, in respect to approximate 
derivation, of the curve y—fix), is almost everywhere either 0° or 360°. 
Consequently, if one of the approximate derivatives of fix) is finite at 
every point of a set E, then fix) is approximately derivable at almost 
every point of E. 

For approximate derivatives of non-measurable functions, there 
is an isolated result by A. J. Ward [5], and another by Burkill and 
Haslam-Jones [4, (2)]. In his Theory of the Integral, Saks [l, (2)] 
gives a proof of the foregoing theorem of Burkill and Haslam-Jones, 
and remarks that, by a "slight modification" of the proof, the theo­
rem may be extended "in a certain way" to unconditioned functions. 
However, he gives no explicit proof.4 But we prove in the present paper 
that the Denjoy analogue for approximate derivatives for the case of 
non-measurable functions is different from the literature result for 
measurable functions. 

The present paper communicates the proper analogue of Denjoy's 
theorem for approximate derivatives of unconditioned functions, and the 
proof is simple and straightforward. It turns out for this extension— 
in contradistinction to the corresponding result for measurable functions 
—that each of the cases (a), (/3) and (7) can occur on a set of positive 
exterior measure. The reasoning also shows just why case (/3) drops 

4 Curiously, he makes no reference to Jeffery's paper on the same question [6] 
which appeared prior to the publication of the book of Saks and was reviewed by him 
in Zentralblatt fur Mathematik [7]. 
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out when ƒ(#) is measurable. 
In a paper by R. L. Jeffery [6], on the approximate derived num­

bers of arbitrary functions, the results summarized in his Theorem 
VI are similar to our main results. Jeffery uses an unusual definition 
of approximate derived number, and his work is based on the unusual 
idea of metric separability. His proofs are difficult to read. He does 
not develop the proofs of the preceding results, and omits the discus­
sion of the existence, in his sense, of the pertinent approximate 
derivative numbers in case the hypotheses of his Theorems IV and 
V are not satisfied. 

The principal means employed for obtaining our stated results is 
the theorem of Professor Blumberg on the "measurable boundaries of 
an arbitrary f unction." This theorem [3, p. 272] is as follows: 

THEOREM (BLUMBERG). With every real function f (x), one- or many-
valued, defined on an interval I, there are uniquely associated two func­
tions u{x) and l{x), defined in I, having the following properties: 

(i) u(x) and l{x) are measurable. 
(ii) The set of points xfor which f(x)>u(x) or f(x) <l(x) is of meas­

ure zero. 
(iii) The points (x, u(x)) and (x, l(x)) are positively approached6 by 

the curves y — u(x), y = l(x), respectively, for every x; these points are 
fully approached6 by the curve y =f(x) for almost every x, and positively 
approached f or every x. 

This theorem gives a structural representation of an unconditioned 
function ƒ (#) which shows that ƒ (x) is necessarily built—in the words 
of Professor Blumberg—"on the scaffolding of two measurable func­
tions/ ' the measurable boundaries of f(x). I t is this structure which 
permits the transfer of various theorems on measurable functions to 
arbitrary functions. The memoir of Professor Blumberg cites diverse 
interesting cases where this transfer can be effected. The present 
paper thus adds another application of this theorem. 

2. Lemmas. In this section, we prove two lemmas which are 
utilized in the proof of the theorems of §3. 

LEMMA 1. For every real function f (x), the set E = Ex[u+(x) 7*u~{x)] 
is of measure zero. A like result holds f or l+(x) and l~(x). 

6 The point (£, rç) is positively approached by the curve or function y=*f(x) if for 
every pair k, I of real numbers, with k<rj<l, the set Eu—Ex[k<f(x) <l] has positive 
upper, exterior density at £. 

6 The point (£, rj) is fully approached by y—fix), if for every pair k, I, with k<rj<l, 
Eu is of exterior density 1 at £. 
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PROOF. Let Ei = Ex[u+(x)>u-(x)]. For a fixed rational number r, 
let Er = Ez[u+(x) >r>ur(x) ]. Then 

Ex = £ Er, 
r 

where r ranges over the set of rational numbers. On account of the 
definition of &*(#), and the condition for the points of ET, the set 

E,\f(x) > r, x > i] 

has positive upper exterior density at every point £ of Er; and the 
set 

E»\f(x) > r, x < {] 

has zero exterior density at £. Hence the set 

£*[ƒ(*) > r] 

has positive upper exterior density at the right and zero exterior 
density at the left of every point of Er. Now an arbitrary set has its 
exterior density either 0 or 1 almost everywhere. Hence Er, and there­
fore Eif is of measure zero. Similarly, the set of points x for which 
u+(x) <u~~(x) is of measure zero. We conclude that E is of measure 
zero. 

I t follows similarly that the set Ex[l+(x)^l"(x)] is of measure 
zero. 

LEMMA 2. For every real function f(x), if u(l-) =ƒ(£), then A+(u, f) 
=A+(f, (•) and A-(u, £)=,4_(/ , (•). Similarly, if /(£) =ƒ(£), then 
A~(l, ®=A-(f, © and A+(l, ï)=A+(f, {). 

PROOF. Suppose u(£) =ƒ(£). Since u(x) ^f(x) for almost every x, we 
have 

Qiu, £, *) è (>(ƒ, £, *) for a.e. a > £ 

Hence 

(2.1) i + ( M ) è i + ( / , Ö . 

On the other hand, suppose A+(f, £)=&. We may assume that 
k < + oo ; for if k = + oo, we have ^4+(w, £) ̂ A+(f, £) = + oo, whence 
-4+(w, £) =5:-4+(/, £)• For a given €>0, let X be the straight line through 
the point (£,ƒ(£)) = (£, w(f)) with slope fe+e. Then, by the definition 
of A+(f, £), the set E of numbers x>% for which the point (#, /(ff)) 
lies above X has exterior density zero at if. Hence for every rj>0, 
there exists a positive number h such that 
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me(IE) < rjl 

for every interval I with £ as left end point and length l<h, where 
me(IE) denotes the exterior Lebesgue measure of IE. 

If E = I - I E , we have 

mi(E) > (1 - ri)l 

where m t(E) denotes the interior Lebesgue measure of Ê. Let T be 
a measurable subset of E of measure greater than (l-~rj)l and such 
that the density of T is 1 at each of its points. For every x of E, 
the point (#, ƒ(#)) lies on or below the line X. Since, by the theorem 
of Blumberg, the point (#, u{x)) is positively approached by y=f(x) 
for every x, it follows that for every x of T, the point (x, u(x)) also 
lies on or below X; that is, 

Q(ut £, x) S k + € 

for every a; in T. Hence, if we denote the set 

EjÖ(w, £, *) > * + €, * > £] 

by Ei, then me{EiI) <rjl. Since this holds for every 77>0 however 
small, and for every / of length Kh, we conclude that the exterior 
density of Ei is zero at the point J. This shows that A+(u, £) ^fe+e, 
and since e is arbitrary, it follows that 

A+(u, ï)èk = A+(f, Q. 

Therefore, by (2.1), 

A+(u, © = il+(/f Q. 

Other parts of the lemma follow similarly. 

3. Theorems. Theorem I states some properties of approximate 
derivatives which hold for both measurable and non-measurable func­
tions. Some of these results are in the literature, but our proof is dif­
ferent and simpler. Theorem II gives sufficient conditions for the 
approximate derivability of arbitrary functions. Theorem III proves 
the principal result of this paper, namely the extension of Denjoy's 
theorem to approximate derivatives of arbitrary functions. 

THEOREM I. Iff(x) is a finite function, then: 
(i) The set of points for which the upper approximate derivative on 

one side is less than the lower approximate derivative on the other side is 
of measure zero. 

(ii) If one of the approximate derivatives is finite at every point of a 
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set E, it is equal to its opposite derivative at almost every point of E. 
(iii) The set of points where the upper approximate derivative is — <*>, 

or the lower approximate derivative is + <x>, is of measure zero. 

PROOF, (i) It is sufficient to reason about the set 

E « E9[A+(x) <A-(x)] 

since the corresponding set with the left and right sides interchanged 
may be treated similarly. If x is a point of £, A+(x) cannot be + <*>. 
It follows that the set 

Ex[u(x) >ƒ(*), xEE] 

is of measure zero. For by the theorem of Blumberg, the point 
(x, u{x)) is fully approached by the curve y=f(x) at almost every x; 
hence the inequality u(x) >f(x) would imply, for almost every x of 
Ey that A+{x) = + 00. Accordingly, u(x) ^f(x) for almost every point 
x of E. But the set Ex[u(x) <ƒ(#)] is of measure zero. Consequently, 

u(x) = ƒ(#) a.e. in £. 

Now we apply Lemma 2, obtaining the equalities 

A+(x)[= A+(f, x)] = A+(u, x), 

A-(x)[= A-(f, x)] =A-(u,x) 

for almost every x in E. Since u{x) is measurable, the set Ex[A+(u, x) 
<A-(u, x) ] is of measure zero—according to the results cited in the 
introduction for the approximate derivatives of measurable functions. 
Hence E=Ex[A+(x) <A-(x)\ is of measure zero. 

(ii) Suppose A+(x) is finite at every point of a set E. As before, 
we must have 

u(x) = f(x) a.e. in E 

and (3.1) applies. By the results for measurable functions just re­
ferred to, the measurable function u(x) has a finite approximate 
derivative A (u, x) a.e. on £. Hence 

A+(u, x) = A-(u, x) a.e. in E. 

Consequently, by (3.1) 

A+(x) = A-(x) a.e. in E. 

The reasoning for the cases where the other approximate derivatives 
are finite is similar. 

(iii) It is sufficient to reason about the set 



i948] ON APPROXIMATE DERIVATIVES 799 

E - Ez[A+(x) = - oo ] 

since the other cases are similar. By reasoning like that for (i), we 
have 

u(x) g f(x) a.e. in E. 

Since the set of the points for which u(x) <f(x) is of measure zero, it 
follows that 

u(x) = f(x) a,e. in E. 

We may consequently apply (3.1) and conclude that 

A+(u, x) = A+(x) = — oo a.e. in E. 

But for the measurable function u(x), the set of points for which 
A+(u, x) = — oo is of measure zero. Hence E —Ex[A+(x) = — oo ] is of 
measure zero. 

THEOREM I I . If f(x) is a given finite function, let E be the set of 
abscissas at which either the two approximate derivatives on the same side 
or the two upper {or lower) approximate derivatives are finite. Then f {x) 
is approximately derivable at almost every point of E. 

PROOF. Let Ex be the subset of E at which A+(x) and A+(x) are 
finite. By Theorem I, case (i), we have 

A+(x) = A-(x), A+(x) = A~~(x) a.e. in E\. 

But since 

A+(x) è A+(x), A~(x) è il-(*) 

for every x in E, it follows that 

A+(x) = A-(x) g A-(x) = A+(x) a.e. in E\, 

whence A+(x) =A+(x). The four approximate derivatives are conse­
quently finite and equal, hence f(x) is approximately derivable at 
almost every point of £ i . The other three possibilities may be treated 
similarly. 

THEOREM I I I . For any finite f unction f (x), the directional angle, in 
respect to approximate derivation, of the curve y —fix) is, at almost every 
x, either 0° or 180°, or 360°. 

PROOF. The set of points x for which any one of the relations 

ƒ(*) > u(x), f(x) < l{x), 
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U+(x) 7* U~(x), l+(x) 7* l~(x) 

holds is of measure zero (by the theorem of Blumberg and Lemma 1). 
Therefore we need only consider those points x at which 

u+(x) = u~(x) = u(x), l+(%) = l~(x) = l(x) 

and 

u(x) è f(x) è /(*). 

Case (a). u(x) >f(x) >l(x). From u(x) >f(x), it follows that 

A+(x) = + oo, A-(x) = — oo a.e. 

(cf. proof of Theorem I). Likewise, it follows from f(x)>l(x) that 

A~{x) = + oo, A+(x) = — oo a.e. 

Hence in this case the directional angle is 360° almost everywhere on 
the set Ex [u(x) >ƒ(*) >l(x) ]. 

Case (b). u(x) =ƒ(#) >l(x). (The relation u(x)>f(x)=l(x) may be 
treated similarly.) From f(x) >/(#), it follows, as before, that 

A~(x) = + oo, A+(x) = — oo a.e. 

From u(x) —fix), it follows, by Lemma 2, that 

A+(x) = A+(u, x), A-(x) = A„(u, x). 

If A+(u, x) is finite for almost every x in a set £ , then, on account 
of the measurability of u(x), A+(u, x) =A-(u, x) almost everywhere 
in E. Hence A+{x) and A-{x) are finite and equal almost everywhere 
in E. The directional angle is, therefore, 180° almost everywhere in 
£ . If A+(u, x) = + oo for almost every x in £ , then A-(u, x) = — oo at 
almost every point of E (again on account of the results for measur­
able functions). Hence A+(x) = + oo and A~(x) = — oo almost every­
where in E. Therefore the directional angle is 360° almost everywhere 
i n £ . 

Case (c). u(x) =ƒ(#) =l(x). By Lemma 2, we have at every point of 
E = Ex [u(x) =ƒ (x) = l(x) ] 

A+(%) = A+(u, %), A„(x) = A„(u, x)y 

A-(x) = A~(l, x), A+(x) = A+(l, x). 

Now since u(x) *zl(x) for every x, it follows that 

A+(u, x) ^ A+(l, x), A+(u, x) è A+{1, x)} 

A~(u, x) S A~(l, x), A~(u, x) S A~(l, x). 
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On the other hand, u(x) and l(x) are both measurable. The direc­
tional angle is, therefore, either 0° or 360° at the points of y = u(x) 
and y = l(x)y for almost every x. Consequently, 

A+(u, x) = A~(u, x) = sup A (u, x)y 

A+(l, x) = A"(ff x) = sup .4 (/, x), 

A+(Uj x) = A-(u, x) = inf A (u, #), 

A+(l, x) = A„(l, x) = inf A(l, x), 

say, for almost every x. From (3.3) and (3.4) we obtain 

(3.5) sup A (u, x) = sup A (/, x)> inîA (u, x) = inf A (Z, x) a.e. in E. 

Combining (3.2) and (3.5), we obtain, for almost every point x of £ . 

A+(x) = sup 4̂ (w, x) — sup 4̂ (/, x) = ^4"(^), 

^4+(i^) = inf A (u, x) = inf A (/, ^) = A-(x). 

Hence the directional angle of y=f(x) is, almost everywhere in £ , 
the same as that of y = u(x) or y = l(x) ; that is, either 0° or 360°. This 
completes the proof. 

REMARK. A measurable function f(x) is aproximately continuous 
almost everywhere, and therefore 

u(x) = f(x) = l(x) a.e. 

Thus case (c) of Theorem III occurs almost everywhere, and the di­
rectional angle of y =/(x) is, therefore, either 0° or 360° almost every­
where. 

The following simple example shows that case (/3) (directional 
angle = 180°) may be realized for a w<w-measurable function on a set 
of positive measure. Let I = Ei+E2 be a decomposition of the interval 
/ : (0, 1) into two disjoint, non-measurable sets, each of exterior 
measure 1. Define f(x) = 1 in Ei, f(x) = 0 in £2 . I t follows that case (j3) 
is valid at every point of J. 

The results of this paper on approximate derivatives, in particular 
Theorems I, II and I I I , are readily extensible to the case where x 
ranges over an arbitrary set instead of an interval. They are also 
easily extended to many-valued functions. 
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