A CHARACTERIZATION OF SEMI-SIMPLE RINGS WITH
THE DESCENDING CHAIN CONDITION

OSCAR GOLDMAN

H. Weyl! has defined a semi-simple algebra (of finite rank) to be
an algebra which admits a faithful semi-simple linear representation.
Now, algebras are rings with a field of operators; Artin and others?
have shown that the theory of semi-simple algebras can be general-
ized to a theory of semi-simple rings (without the field of operators)
provided we replace the condition of finite rank by suitable finiteness
conditions. (Both the ascending and descending chain conditions were
assumed, but it was later shown that the descending chain condition
was sufficient.?) The notion of semi-simplicity is defined by the con-
dition that the radical reduces to {0}, there being several equivalent
definitions of the radical. We introduce another one below.

The question now arises whether the Weyl definition could not be
extended to the case of rings. To do this, we must extend to an arbi-
trary ring the notion of a linear representation of an algebra. This
can be done by replacing the consideration of the algebra of matrices
by the more general notion of the ring of endomorphisms of an abelian
group: a representation of a ring A will be a homomorphism p of 4
into the ring of endomorphisms of an additive group M. Let such a
representation be given; we can define a law of composition, (a, m)
—am, between elements of 4 and of I by writing am = {p(a) } (m).
The composite object formed by I and this law of composition is
called an A-module. A sub-module of an A-module M is a subset N
of <M which is a subgroup of the additive group of I and is such that
ANCN. (AN is defined to be the set of all finite sums Y _saim;, a:E4,
mi;EN.) A homomorphism of an A-module M into an 4-module I’
is a homomorphism % of the additive group of I into the additive
group of M’ which is such that k(am) =ah(m) for all aEA, mEM.

An A-module M is said to be simple if its only submodules are {0}
and itself. Concerning simple modules, we have the well known
lemma:

ScHUR's LEMMA. 4 homomorphism h of a simple A-module M into
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an A-module I’ either maps M on {0} or is an isomorphism of M with
some sub-module of M'. If M’ is also simple, and h(M) = {0}, then
h(M) =W’.

If {mx},EL is a family of sub-modules of an 4-module M, we call
the sum of this family of sub-modules,and we denote byzxe z M, the
set composed of all sums D gz 7, where for each \, 7, €N, and
n,=0 except for a finite number of the indices N. It is clear that
erz, N» is again a sub-module of M. The sum is said to be direct if
the representation of an element of the sum in the form Z*E L m
uniquely determines the #,. (It is clear that 9 +MN, is direct if, and
only if, NNy = {0}.)

A module is said to be semi-simple if it can be represented as the
direct sum of simple sub-modules. The following facts can easily be
shown.

I. If a module is the sum of a family § of simple sub-modules, it is
also the direct sum of some sub-family of {.

II. For a module M to be semi-simple, it is necessary and suffi-
cient that, given any sub-module % of M, there should exist a sub-
module N’ such that M is the direct sum of N and N’.

If M is an A-module, define M to be the set of all m EM for which
Am=1{0}. Mr is clearly a sub-module of M; we call Mz the trivial
sub-module of . The set A of all aEA such that aM = {0} is clearly
a two-sided ideal in A, called the annihilator of M. The two extreme
cases are the one in which %= {0}, in which case we say that I is
faithful, and the case in which A =4 and therefore Mr =M.

The radical* is now defined to be the intersection of the annihila-
tors of all simple A-modules. It is clear that the radical is a two-
sided ideal in A. The ring 4 is said to be semi-simple if the radical R
reduces to {0}. It is readily seen that the factor ring 4/® is semi-
simple.

The following theorem justifies our use of the term “radical”:

THEOREM 1. Let A be a ring, and R its radical. Then every nilpotent
left ideal is contained in R and, furthermore, if A satisfies the descending
chain condition for left ideals, R is itself nilpotent.

If M is any simple 4-module, A any left ideal in 4, AIM is a sub-
module of M, and is therefore {0} or M. If AM =M, then AM =M
for any positive integer n. Thus if %»={0} for some n, we have

AM = {0} and ACK.

¢ This definition of the radical is due to C. Chevalley. I am indebted to Professor
Chevalley for many interesting discussions on the subject of this paper.
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We suppose now that A4 satisfies the descending chain condition
for left ideals and that R is not nilpotent. Consider the chain
RONR2D -+ - ; under our hypotheses, there is some N such that
RY =R¥+1= . . . {0}, Call R¥=&; we have &?=& and since R
is two-sided, & is also. Let E be the set of all left ideals A5 {0} such
that @A =9U. E is not empty, since & is in E. Since the descending
chain condition holds, we see that there is a minimal element in E,
say o, such that no ideal in E is properly contained in ¥, Let Uy
be the set of all &%, for which Sx={0}. Since & is two-sided, it
follows that 2, is a left ideal. If x&EN,, x&EN;, S« is a left ideal, not
{0}, is contained in %o, and is such that &S(Sx) = S% = Sx; whence
it follows that &x =N,. Ao, A1 being left ideals, the factor group Ao/
has a natural structure as an 4-module. By the preceding remark,
we have for any nonzero £E& %o/, S% = NAo/U;. But then for any non-
zero £EAo/A;, we have A% =%,/U;, from which it is clear that Ao/A;
is a simple A-module. Because of this we have RNy/Ay= {0} and
therefore ©%o/%= {0} which is contrary to our assumptions. From
this it follows that R is nilpotent,

The natural generalization of Weyl’s definition, that a ring is semi-
simple if it has a faithful semi-simple module, is, by Theorem II,
equivalent to our definition.

THEOREM I1. A necessary and sufficient condition that the radical R
of a ring A be {0} is that there exists a faithful semi-simple A-module.

Let M be a semi-simple A-module. If we write It as the direct sum,
Exe;, Ny, of simple sub-modules, it is clear that the annihilator of I
is the intersection of the annihilators of the modules M. If M is
faithful, its annihilator is {0}, giving us a system of simple modules,
the intersection of whose annihilators is {0}. Thus %= {0}.

If ®={0}, let {I\} reL be a system of simple 4-modules chosen
in such a manner that Nyg1¥ = {0}, where %, is the annihilator of
M. Let M’ be the strong direct product of the additive groups of
the M\. We make M’ into an A-module by writinga( + - - ,m», - -+,
Mrry = )=(+++, amy +++, amy, - -+ ). Let IM¥* be the sub-
module of I’ consisting of all elements of MM’ all of whose coordi-
nates other than the Mh are zero. IN\* is clearly isomorphic to M
and is therefore simple. Let I =Z)‘ez, IM*. Since the PM¥ are simple,
M is semi-simple. The annihilator of I is the intersection of the an-
nihilators of the I%¥*; their intersection was chosen to be {0}, whence
it follows that I is faithful. This completes the proof of the theo-
rem.

The class of semi-simple rings is much wider than the class of semi-
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simple rings with the descending chain condition.® Our object is to
characterize the latter class of rings by properties of their modules. It
is known that if 4 is a semi-simple ring with the descending chain con-
dition, then every 4-module is the direct sum of its trivial sub-module
and a semi-simple sub-module. We propose to show that this property
is characteristic of the class of rings we are studying:

THEOREM 1II. Let A be a ring which has the property that every
A-module can be represented as the direct sum of its trivial sub-module
and a semi-simple sub-module. Then A is a semi-simple ring in which
the descending chain condition holds.

For convenience we introduce two modules, {Z and A~ X Z, which
can be defined for any ring. The additive group of A% is that of 4,
while, for a1 EA4, e EAE, a0, is the element of AL formed by taking
the product of a; and a; in 4. Sub-modules of AL correspond to left
ideals in 4, and conversely. HZX Z consists of all pairs {(a, n) } where
a& A and 7 is an integer. We define

(@g,n) + (@, n) = (a+ d,n+ n), a(d’, n) = (ad’ + na, 0).

Since a(0, 1) = (a, 0), the element (0, 1) is annihilated by no nonzero a.

We return to the proof of the theorem. Let us write A~ as the direct
sum of A% and a semi-simple sub-module B, where %% is the trivial
sub-module of %AZ, consisting of those a €4 for which Aa={0}. We
shall show that Ap={0}. If M is any A-module, we write
M=N+Mr, the sum being direct so that MyNN={0}. Since N
is a sub-module of M, and A% a subset of 4, we have WENCRK.
However, A(WN)=A¥)N=1{0}, since A% ={0}, so that
ATNRCMy. We have then AN ={0}. Since AFM=AFN+AFM7,
AMr={0} and therefore sMr={0}, so that AkM={0} for
every IN. But we have already seen that (0, 1) EALX Z is annihilated
only by the zero element of 4, whence it follows that k= {0},
which proves our assertion. This result under the condition of the
theorem shows that %% is a semi-simple 4-module.

We shall need the following two lemmas.

LeEMMA 1. If A is a ring which satisfies the condition of the theorem,
and U is a two-sided 1deal in A, then the factor ring A /U also satisfies
the condition of the theorem.

Let = be the natural homomorphism of 4 onto A/%. If M is

& The ring of integers, which does not satisfy the descending chain condition, is
seen to be semi-simple by consideration of the cyclic groups of prime order as simple
modules for this ring.



1946] SEMI-SIMPLE RINGS 1025

any A/%A-module, we can consider M as an 4A-module by writing
am=m(a)m for each a €4, mEM, and retaining the additive group
structure of M. It is readily verified that the trivial A-sub-module
of M is the trivial 4 /A-sub-module; and that every 4-sub-module of
M is an A/A-sub-module, and conversely. Writing M =Mr+N,
where 0 is a semi-simple A-sub-module, it is clear that N is semi-
simple as an 4/%A-sub-module, which proves the lemma.

LeMMA I1. Let A be a ring which satisfies the condition of the theorem.
Furthermore, suppose that there exists an integer q#<0 such that
g4 = {0} Then the ring A has a unit element. (¢4 is the set of all ele-
ments of the form ga, a€4.)

Form the module A%XZ. As an 4-module, AEX Z can be expressed
as the direct sum N;+ Az, where ¥, is the trivial sub-module of AL X Z.
Suppose that the element (0, 1) EAZLX Z decomposes into (—a,, 1 —n)
+(ao, n), with (—ao, 1—n)EN;, (ao, n)EN.. We have (0, gn)
= (qao, gn)=gq(ao, n), which is in ¥, since (ao, #) is. However, for
each a €4, a(0, gn) =(gna, 0) =(0, 0), so that (0, gn) EY;. But then
(0, gn) =(0, 0) or n=0. The element (—ao, 1 —n)=(—a,, 1) isin A,
so that (—aae+a,0)=a(—a,, 1) =(0, 0) or aao=afor all aEA4. Since
a(b—aob) =0 for every a, bEA, and since k= {0}, we have aob=b.
Thus @, is a unit element for the ring 4, concluding the proof of the
lemma.

We shall now show that the ring 4 has a unit element in every
case. We start by showing that the trivial sub-module ¥; of YZX Z has
at least two elements. If %;= {0}, then AL X Z is semi-simple. The set
(4, 0) is a proper sub-module of A~ X Z; we can then write, as a direct
sum, ALXZ = (4, 0)+As, with Az {0} Since Y3 is a sub-module of
HEX Z, we have AA;CUs. However every element of AY; has a zero
in the second coordinate, so that AA;C (4, 0). But then 4AUs= gO
and therefore AsCA;, contradicting the supposition that A;={0
and proving the assertion.

Now let (a’, #n’) be any nonzero element of ¥, that is, a(a’, n’)
=(0, 0) or @aa’+n’a=0 for all aEA. Clearly »n’ is not zero, for, if it
were, ¢’ would be zero, contrary to the condition that (¢’, #»’) is not
zero. If n’a=0 for all @, Lemma II shows that 4 has a unit element.

Let %, be the set of all a&EA for which #’a=0, and let $=n'A4.
Clearly both are two-sided ideals in 4. We assert that 4 is the direct
sum of A, and B. We have already seen that A% is semi-simple; write
9L as the direct sum, Y e ¥y, of simple left ideals. The mapping,
A —An, which sends a €, into #’a, is an endomorphism of the simple
module 2, which, by Schur’s Lemma, is either zero or an automor-

’

’
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phism. Let LoCL be the set of all A for which this endomorphism is
zero. %y is then D e, Y. Furthermore,
S MW=n > U=n W=nd=39.
NEL-Lg ANEL-L, \EL
Thus, 4 =%,+B, the sum being direct.

Since both %, and B are two-sided ideals, ¥ is isomorphic with the
factor ring A/9B. By Lemma I, %, then satisfies the conditions of
Lemma II with ¢ =#’, and hence ¥, has a unit element which we shall
denote by e,. Because of the two-sidedness of Ao and B, we have
AB=BAo= {0} (since AeNB={0}), so that it only remains for us
to show that B has a unit element. In the decomposition 4 =%,+B,
wewritea’' =a+B,aENo, LEB. Wehavealready seen that aa’ = —n'a
for each a€A4. For any bEB, we have —n’b=ba’=b(a+p)=08.
Since BEDB, e1= — (1/n")B is defined, and is such that be; =b for every
b&ED. Exactly as in Lemma II, we have be; =e,b, so that e, is the de-
sired unit element for B. It is clear that ey+e, is the unit element for
the entire ring 4.

Having established the existence of a unit element in 4, we can
easily derive that A satisfies the descending chain condition. Again
we write the semi-simple module %% as the direct sum, erz, A,
of simple left ideals. The unit element then decomposes in the form
1= her 1, with 1,=0 for all A\>)\;, 1S{<N. But then a=a-1
=Exez, a: 1x=2)eL ax, arx=a-1,, so that ax=0 for all A»\; and
all a €A. This shows that %x= {0} for A3\, so that %~ is the direct
sum of a finite number of simple left ideals, giving immediately the
descending chain condition. The module Y* is semi-simple. Because
1E9UZ, the annihilator of ¥ reduces to {0} or A~ is faithful. By Theo-
rem II the ring 4 is semi-simple. This concludes the proof of Theorem
II1.

It is well known®that every leftideal in a semi-simple ring with the
descending chain condition is principally generated by an idempotent.
The method of proof of Theorem III enables us to prove the converse:

THEOREM V. If every left ideal in a ring A is principally generated
by an idempotent, A is a semi-simple ring with the descending chain
condition.

We shall first show that A has a unit element. 4 being its own left
ideal, there is an idempotent e such that Ae=A. Thus, given any
aE A4, thereis a b&4 such that a =be. But then ae =be? =be =a, since
e is idempotent. Thus e is a right unit element in 4. Let now B be

¢ N. Jacobson, Tke theory of rings, Mathematical Surveys, vol. 2, 1943, p. 65.
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the set of all elements of the form ea—a. Since be=5, B is clearly a
left ideal so that there is an fEA, with f2=f and B =Af. Since f is
idempotent, it is clear that f&€®8. There exists then an element g4
with f=eg—g. Butf=f2=ff=f(eg—g) =0o0r B= {0} Thusea=aore
is a unit element for 4.

From the condition of the theorem, and from the existence of a
unit element in A4, it follows that A% is semi-simple. For, if ¥ is any
left ideal, there is an idempotent f with Af=%. But then AZ is the
direct sum of Af and 4 (e—f) so that AL is semi-simple. By the argu-
ment in the last paragraph of the proof of Theorem III, it follows
that 4 is a semi-simple ring with the descending chain condition.
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