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Introduction. In an earlier paper [l]2 by the authors it was sug­
gested that at least the ring characterization of real Hubert space 
given therein might be extended to the complex case by making use 
of a device employed by B. H. Arnold [2] in so extending a theorem 
of Eidelheit. It is the purpose of the present note to show that this 
can indeed be done not only for the ring characterization but for the 
lattice one as well. 

The difficulty in the complex case is that the complex field admits 
a great many discontinuous automorphisms. It is overcome by mak­
ing use of the device of Arnold mentioned above to show that in the 
infinite-dimensional case only continuous automorphisms present 
themselves (see Lemma 2 below). It is shown by an example that the 
infinite-dimensionality is essential and that accordingly the theo­
rems of [l] cannot be extended to the complex case in quite their 
full generality. 

1. Two preliminary lemmas. Lemmas 1 and 2 below constitute our 
formulation of ArnokTs argument. 

LEMMA 1. Let X be an infinite-dimensional normed linear space {real 
or complex). Then there exists an infinite sequence #1, X2, xZi • • • of 
elements of X such that given any bounded infinite sequence Xi, X2, X3, • • • 
of scalars there exists a member I of the conjugate space X of X such 
that l(xi)~\i for i = l, 2, • • • . 

PROOF. As is well known, it is possible to construct infinite se­
quences xi, #2, • • • î lu ht ' ' ' where each Xi is in X and each U is 
in "X so that /i(x/) = S»/ for i, j = l, 2, • • • . Furthermore, it is clear 
that we may suppose that | | / i | |= l /2 \ Let Xi, X2, • • • be an arbi­
trary bounded sequence of scalars with l.u.b.|X»| =ikf. For each 
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x*=li(x)xi+h(x)x2+ - - - +ln(x)xn in X1+X2+ * • * define I(x) as 
h(x)\i+h(x)\2+ • * • +ln(x)\n. Then ? is obviously linear.8 Further­
more 

I «c*> I as UMI I M I I xxl -H I M I I M I I x, | H 1- HJUIIIM11 x.1 
^ Jf IHI [1/2 + 1/4+ • • • + 1/2*] < M\\xl 

Thus J is bounded. Hence by the Hahn-Banach extension theorem or 
the Bohnenblust-Sobczyk extension of it to complex spaces [3], J co­
incides on #i4-#2+ • • • with a member / of 3f. Since it is obvious 
that J(#»)=X; for i = l, 2, • • • the truth of the lemma follows. 

LEMMA 2. Let T be a one-to-one semi-linear4 transformation of an 
infinite-dimensional complex normed linear space X onto a second such 
space Y. Then if T carries closed maximal subspaces into closed maximal 
subspaces the automorphism involved in the semi-linearity of T is a con­
tinuous one. 

PROOF. Let xi, x2, • • • be a sequence of elements of X having the 
property described in Lemma 1. Let jui, /x2, • • • be an arbitrary 
bounded sequence of complex numbers and let fi{ , ix{ , • • • be their 
transforms by the automorphism in question. In order to prove that 
the automorphism is continuous it is clearly sufficient to show that 
{M/ } is a bounded sequence. Suppose that it is not. Then we may se­
lect a subsequence Xi, X2', • • • such that |X/ | >i \\T(xi)\\ for i = l, 
2, • « • . Now let I be a member of X such that l(xi) =Xt- for 
i = 1, 2, • • • , let M be the null space of / and let £ be an element of X 
with /(#) = 1. I t is clear that for i = l, 2, • • • we have #»=s»+Xt# 
where ZiEM. Hence T(xi)fhl ~T{Zi/\i) + T(x). Since | | r (*<)A/ | | 
<l/i it follows that T(~-Zifki)—>T($) as i—x». Hence T(x) is in the 
closure of T(M). Since M is a closed maximal subspace, T(M) is, 
by hypothesis, closed. Hence T(%)ÇLT(M). Since T is one-to-one this 
means that $ is in M and we have a contradiction. Thus the lemma is 
proved. 

COROLLARY. Under the hypotheses of Lemma 2 the automorphism in 
question is either the identity or the automorphism carrying every complex 
number into its conjugate and hence T is either linear or ^conjugate 
linear" 

2. The lattice characterization. Theorem 1 of [ l ] after slightly 
8 In this paper linear means additive and homogeneous. 
4 A semi-linear transformation is a transformation Tsuch that TÇKx+py) **\'T(x) 

+jx'T(y) where x and y are arbitrary elements of the vector space, X and /* are scalars 
and > —»X' is an automorphism of the scalar field independent of x, y, X and JJL. 
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strengthening the dimensionality restriction may be stated for com­
plex spaces as follows: 

THEOREM 1. Let X be an infinite-dimensional complex Banach space', 
and let A be its lattice of closed subspaces. If there exists an operation 
M-+M' from A to A such that : 

(1) if Mi and Mi are in A and M1QM2 then Mi DM/ , 
(2) ifMEAthenM" = M, 
(3) if MEA then MT\M=0, 

then there exists an isomorphism between X and a (not necessarily 
separable) complex Hubert space such that the correspondence M<-*M' 
is carried over into the correspondence between orthogonal complements 
in the Hubert space. In other words it is possible to introduce an inner 
product (x, y) in X with the properties listed in the standard Hilbert 
space axioms such that the new norm \\\x\\\ in X defined by the equa­
tion [(I#||| =(#, #)1/2 is equivalent to the given norm ||#|| and further­
more such that for each M in A, M' is the set of all y in X for which 
(x, y) =0for all x in M. 

PROOF. Let If be a one-dimensional subspace of X. It is clear that 
M is closed and it follows from the fact that M-*M' is a lattice anti-
isomorphism that M' is a maximal closed linear subspace of X. Then 
let M° be the one-dimensional subspace of 3f, the conjugate of Xt 

consisting of those members loi"X such that l{m) = 0 for all m in M'. 
It is easy to see that the operation M—*M° thus defined sets up a one-
to-one linear independence preserving correspondence between the 
one-dimensional subspaces of X on the one hand and those of X on 
the other. Now in the real case Lemma A of [4] allowed us to con­
clude the existence of a linear transformation of X on H such that 
T(M) = M° for all one-dimensional subspaces M of X. A slight modi­
fication of the proof of this lemma enables us to conclude the exist­
ence of a semi-linear such transformation in the present case. We 
need only replace our reference to the theorem that a collineation 
between two real projective planes can be represented analytically 
by a linear transformation by a reference to the more general theo­
rem relating collineations between projective planes over a field $ to 
semi-linear transformations. 

Now every maximal closed subspace of X is clearly of the form M' 
where M is one-dimensional and it is readily verified that T(M') is 
the set of all / in 1C taking M into zero and hence is maximal and 
closed. It follows then from Lemma 2 that T is either linear or con­
jugate linear. We show now that the former alternative is impossible. 
Supposing T to be linear let x and y be linearly independent and set 
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T{x) =ƒ, T{y) =g. Then for each complex number /*, T(x+jxy) —f+ixg 
and (f+fJLg)(x+w)=f(x)+iJL(g(x)+f(y))+ii2g(y). Since AfHM'-O, 
ƒ(#)> g(y) and (J+fJig) (x+fiy) are all different from zero. But since 
g(y) 5*0 the equation f(x)+fx(g(x)+f(y))+fi2g(y)=0 has a solution 
for ju. Since (ƒ+/*#)(#+W) ?*0 this is a contradiction. 

We now use the conjugate linear transformation T to define an 
inner product in X. For each two elements x and y let (x, y) =ƒ(#) 
where f—Tiy). Clearly (#, y) is linear in x and conjugate linear iny. 
To show that (x, y) is Hermitian symmetric (that is, (y, #) = (x, y)*Y 
we observe first that (x, y) =0 if and only if (y, #) =0. In fact (x} y) = 0 
if and only if MZQMJ where Mx and lfy are the one-dimensional 
subspaces of X generated by x and y respectively. But by properties 
(1) and (2) of the operation M—>M' we have MXQMJ if and only if 
MyQMx y that is, if and only if (y> x) = 0. Now let x and y be arbitrary 
elements of X with (x, y) 5*0. Then there exist complex numbers X 
and ix such that (a) X(#, x) + (x, y)—0 and (b) fx(y, y) + (x, y)=0. 
(Since g(z) where g=iT{z) is never zero for s 5*0 it follows that for 
z 5*0, (z, z) 5*0.) Equation (a) may be transformed into equation (c) : 
\{xy x)*+(y, #)* = 0 by means of the following sequence of equa­
tions each of which is obviously equivalent to its predecessor: 
Mxfx) + (x1y)^01(x}\*x) + (x}y)^0}(xJ\*x+y)^01(K*x+y1x)^0, 
\*(x, x) + (y, x) =0, X(#, x)* + (y9 #)* = 0. Similarly (b) may be trans­
formed into (d) : ju(y, y)*+(y, x)* = 0. Comparing (c) and (d) on 
the one hand and (a) and (b) on the other we conclude that 
\(x, x)*~ii(y, y)* and that X(#, x)~jj,(y, y). Thus (x, x)/(x, x)* 
— (y» y)/(y> 30*- ^ follows that if (z, z) is real for one element z it is 
real for every w with (x, w) 5*0 and hence for every w. But a simple 
adjustment of T always enables us to realize this condition. Hence 
we may suppose that (#, x)* = (x, x) and (y, y)* = (y, y). We now con­
clude from (a) and (c) that (y, x)*~(x, y) so that (x, y) is Hermitian 
symmetric. The proof of the positive definiteness of (x, x) (after a 
suitable adjustment of T) and the fact that the norm which it defines 
has the properties required is word for word the same as the corre­
sponding proof in the real case [l, page 52] and will not be repeated 
here. We only remark that it is readily verified, using the Bohnen-
blust-Sobczyk extension of the Hahn-Banach theorem, that the theo­
rems of Banach referred to are true for complex as well as real spaces. 

Just as in the real case we conclude at once, from Theorem 1 and 
certain obvious properties of finite-dimensional spaces, the truth of: 

5 In this paper whenever A denotes a complex number -A* will denote its complex 
Conjugate. 
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THEOREM 2. Let X be a complex Banach space and let A be its lattice 
of closed subspaces. Then X is isomorphic to a complex Hubert space 
{not necessarily separable or infinite-dimensional) if and only if there 
exists an operation M-+M' from A onto A which satisfies (1), (2), and 
(3) of Theorem 1. 

3. The ring characterization. The device for reducing the ring theo­
rem to the lattice theorem used in the real case works equally well 
here and we may state the following theorem. 

THEOREM 3.6 Let X be a complex Banach space and let R be the ring 
of continuous linear transformations of X into itself. Then X is iso­
morphic to a complex Hilbert space {not necessarily separable or infinite-
dimensional) if and only if there is an operation T-+T1 from R onto R 
which has the following properties : 

(1) If Ti and T2 are members of R then 

(TxT*)' - Ti T{ and (7\ + T2)' = T{ + Ti. 

(2) If T is a member of R then T" = T. 
(3) If T is a member of R such that T'T^O then T=0. 

In case X is infinite-dimensional the analogue for rings of Theorem 
1 is true. In fact if we follow through the construction of the lattice 
operation from the ring operation used in proving Theorem 3 from 
Theorem 2 (see [1, pp. 53 and 54]) and the construction of an inner 
product from the lattice operation we see without great difficulty 
that if Sx and Sy are members of J? whose ranges are the one-dimen­
sional subspaces of X defined by the elements x and y of X then 
(T(x), 30=0 if and only if SJTS* = 0 and (*, T'(y))=0 if and only 
if Sx' T"Sv = 0. Thus since (Sv' TSX)'**S1 T'Syit follows that (T(x), y) 
= 0 if and only if (*, T'(y))=0 and hence that (x, T'(y))*=0 if and 
only if (xt T*(y)) = 0 where T* is the adjoint of T calculated with re­
spect to the inner product (xf y). Thus for every y, T'(y) and T*(y) 
have identical orthogonal complements so that one is a scalar multi­
ple of the other. It follows easily from this that T' = T*y for all T 
in R. In fact for each x in X, (1 + T)'(x)=\(l + T)*(x)=\(l + T*)(x) 
= Xx + \T*(x) and (1 + T)'(x) = (1 + T')(x) = x + fxT*(x).Thus 
}<x+\T*(x)=x+fJLT*(x) and if T*(x) and x are linearly independent 
we can conclude that X=/x = l. If T*(x) and x are linearly dependent 
choose S so that S*(x) and x are not. Then (S+T)*(x) = (S+T)'(x) 
so that S*(x) + T*(x)=S'(x) + T'(x). Also S*(x)=S'(x) so that 

6 For a proof of a weaker form of this theorem in which it is assumed in addition 
that(xr)*«X*r*see[5]. 



732 SHIZUO KAKUTANI AND G. W. MACKEY [August 

T*(x) = T'(x). Thus in any case T*{x)~T'(x) so that T* = T'. Thus 
we may state : 

THEOREM 4. Let X be an infinite-dimensional complex Banach space 
and let R be the ring of all continuous linear transformations of X into 
itself. If there exists an operation T—>T' from R onto R which has prop­
erties (1), (2) and (3) of Theorem 3 so that X is isomorphic to a not neces­
sarily separable complex Hilbert space then this isomorphism may be set 
up in such a way that the correspondence T—>T' goes over into the corre­
spondence between an operator and its adjoint. In other words, it is 
possible to introduce an inner product (x} y) in X with the properties 
listed in the standard Hilbert space axioms such that the new norm 
| | |#|| | in X defined by the equation |||#||| = (#, x)l/2 is equivalent 
to the given norm ||#|| and furthermore such that f or all x and y in X, 
(T(x),y)-(x,T'(y)). 

4. Some counter examples. The discussion given in paragraph 3 of 
[l] applies without essential change in the complex case so that we 
may conclude here as there that our theorems need not be true if we 
fail to assume completeness for X. 

Finally we show that the infinite-dimensionality assumption in 
Theorems 1 and 4 cannot be omitted. To this end let a be any auto­
morphism of the complex field other than the identity and the con-
jugacy automorphism. For each complex number X let \'=*crl(aQi))*. 
Then X—»X' is clearly an involutory automorphism of the complex 
field. Furthermore if XiX/ +X2X2' + • • • +X„XW' =0 then 

a(\i)a(\{) + a(X2)a(X2') + • • • + <*(Xn)a(Xn') - 0 

or 

a(X,)a(X0* + «(X2MX2)* + • • • + «(Xn)a(Xw)* * 0. 

Hence a(Xi) =a(X2) = • • • =a(Xn)=0 so that Xi=X2= • • • =Xn = 0. 
Now let Rn be the vector space of w-uples of complex numbers and 
for each two members #=Xi, X2, • • • , X»; y=Mi» M2, • • • , Mn of Rn let 
(x, y) =XIJUI' +X2M27 + • • • +XnM«. Then (x, y) is linear in x, semi-
linear with respect to ' in y and such that (y, x) = (x, y)' and (x, x)=*0 
if and only if # = 0. Now for each linear transformation T of Rn into 
itself define T' by the equation (T(x), y) = (x, T'(y)) for all x and y 
in Rn. Then, as is easily seen, T' is a linear transformation of Rn 

into itself and the operation T—^T' has the properties (1), (2), and 
(3) listed in the statement of Theorem 3. On the other hand it is not 
difficult to show that there is no inner product in X for which Tf = T*. 
Let X be a non-real complex number such that a(K) is real. Then 
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X'=X. Hence X—»X' is not the conjugacy operation. Since it is obvi­
ously not the identity there exists a non-real complex number y such 
that jx' is real. Let T be fx times the identity. Then T' will be \x' 
times the identity and for any inner product T* will be p times the 
identity. Since / J ' is real and p is not, T' and T* cannot be equal. 

Similarly using this same "semi-inner product" to define orthogo­
nality in Rn one can prove for n > 1 the existence of an operation on 
subspaces having the properties listed in the statement of Theorem 1 
and not coinciding with the operation of taking orthogonal comple­
ments for any inner product in i?n. 
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