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Introduction. If a continuous flow, the transformations of which 
are denoted by/ ' , is defined in a topological space X, a. point x of the 
space can be classified according to the behavior of the continuous 
orbit of the point. Among the types of points which have been con­
sidered are the periodic points, almost periodic points and recurrent 
points. If we fix the value of the parameter t, we obtain a transforma­
tion of the space X into itself. This transformation and its iterates 
determine a "discrete" flow and the "discrete" orbit of a point. Again 
a point of the space can be classified according to the behavior of the 
discrete orbit of the point. The question then arises as to whether a 
point belongs to the same class in the two cases. 

Since the continuous orbit of a point contains the discrete orbit, 
many properties are retained when we pass from the discrete flow to 
the continuous flow. For example, if a point is periodic with respect 
to the discrete flow, it is clearly periodic with respect to the continu­
ous flow. It is in the passage from the continuous to the discrete flow 
that the results are more difficult to predict. 

In this note, the problem is generalized by replacing the parameter 
space of reals by an additive, abelian, locally compact, topological 
group. The action of such a transformation group T on a point and 
the action of certain subgroups G on the point are then related. It is 
shown that a general recursive property of T carries over to G (Theo­
rem 1). It follows immediately that in the case of a continuous flow, 
if a point is either almost periodic, recurrent, or strongly recurrent 
with respect to the continuous flow, it retains this property with 
respect to the discrete flow determined by fixing the parameter L It 
also follows that these properties carry over from a discrete flow to a 
sub-discrete flow. (For recurrence and almost periodicity, this was 
first proved by Gottschalk [2]1 and subsequently extended to discrete 
semi-flows by Erdös and Stone [l].) 

Theorem on recursive points. Let X be a topological space and let 
T be an additive abelian locally compact topological group. Let ƒ be 
a continuous transformation of XXT into X. We agree to write ƒ'(#) 
in place off(x, t) (x£:X, t^T) whenever we wish. Furthermore, let / 
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define a transformation group; that is to say, suppose f°(x) =x and 

Let there be distinguished in T certain non vacuous sets, called ad­
missible, which satisfy this condition: If A is an admissible set and 
if B is a set in T such that for some compact set C in T we have a^A 
implies BC\(a+C) 5^0 , then B is an admissible set. If XÇLX and if 5 
is a set in T> then x is said to be recursive with respect to S provided 
that if U is a neighborhood of x, then there exists an admissible set 
A such tha t A QS and f(x, A)C.U. 

We suppose throughout that x is a fixed point of X and that G is a 
fixed topologically closed subgroup of T such that T = F+G for some 
compact set F in 7\ We define H to be the set of all elements t of T 
such that #£ƒ(# , / + G ) , where ƒ(#, t+G) denotes the closure of 
ƒ(*,*+£). 

LEMMA 1. H is a topologically closed semigroup (H+HC.H) which 
contains G. 

PROOF. Suppose t, sEi-fifand £7 is a neighborhood of x. There exists 
an element p in G such that f(x, t+p)SU. Select a neighborhood V 
of x for which ƒ( F, t+p) C £7. For some element q in G, ƒ(#, s+q) G F. 
Hence, ƒ(#, t+s+p+q)ÇîU. Thus -H* is a semi-group. Obviously, 
GCH. __ 

Suppose tÇzH and C/is a neighborhood of x. Choose neighborhoods 
V of x and TF of 0 for which W=-W and jf(7f W)CU. Let 
5 G ( / + W 0 n i T . For some element p in G, ƒ(*, s+p)E:V. Now 
ƒ(«, ^+^>) =ft-*f(x, s+p)Gf-8(V)CU. Thus fl*is topologically closed 
and the proof is completed. 

LEMMA 2. There exists a compact set E in H such that H=E+G. 

PROOF. There exists a compact set F in T such that T = F+G. De­
fine E = Fr\H. Using Lemma 1, we see that the set E has the required 
properties. 

LEMMA 3. If H is a group and if U is a neighborhood of x, then there 
exists a compact set C in H such that f(x, C)C.U and tÇzH implies 
(t+C)r\G^0. 

PROOF. By Lemma 2, there exists a compact set E in H such that 
H^E+G. Define D=-~E. Now t&H implies {t+D)C\G^0. For 
each element d in D, there exists an element td in G so that ƒ (x, d+td) 
G U and, hence, there exists a compact closed neighborhood Wd of d 
for which f(x, Wd+td)CU. Cover Z> by finitely many neighborhoods 
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Wdu • • • , Wdn. Define C=Hr\Uti(Wdi+tdi). The set C has the re­
quired properties. 

LEMMA 4. If H is a group and if x is recursive with respect to H, then 
x is recursive with respect to G. 

PROOF. Let U be a neighborhood of x. By Lemma 3, there exists 
a compact set C in H such that f(x, C)CU and tÇzH implies 
(t+ C)C\G 5*0 . Choose a neighborhood V of x for which ƒ( V, C) C CA 
There exists an admissible set A such that AQH and ƒ(#, A)C.V. 
Hence, ƒ(*, 4̂ + C) C £/. Define B = (A + QC\G. The set 5 is admissi­
ble and contained in G. Also f(x, B) C U. The proof is completed. 

LEMMA 5. If M, N are subsets of T such that M is compact and 
#£ƒ(# , M+N), then there exists an element m in M for which x 

PROOF. Suppose the contrary. Then for each element m in M we can 
find a neighborhood Um of x such that f(x, m+N)rMJm = 0; select­
ing neighborhoods Vm of x and Wm of 0 so that Wm = — Wm and 
f(Vm, Wm)CUm, we have/Ox:, m+Wm+N)r\Vm = 0. Choose finitely 
many neighborhoods m+Wm covering M and let F be a neighbor­
hood of x contained in each of the corresponding Vm. I t follows that 
f{x, M+N)r\V=0. This is a contradiction. 

LEMMA 6. If H is a group and iftÇz T~H (t belongs to T but not to H), 
then x<£f(x, t+H). 

PROOF. Suppose #£ƒ(# , t+H). By Lemma 2, there exists a compact 
set E in H such that H=E+G. By Lemma 5, there exists an element 
s in E for which #€ƒ(# , t+s+G). Hence, t+sÇzH and tÇLH. This is 
a contradiction. 

LEMMA 7. If H is a group and if t£:T~II, then there exist neighbor-
hoods Vofx and W of t such that f {x, W+H)C\ F = 0. 

PROOF. By Lemma 6, there exists a neighborhood U of x for which 
f(x, t+H)C\U=0. Choose neighborhoods V of x and Wo of 0 so 
that Wo=-Wo and f(V, W0)CU. Take W=W0+t. The proof is 
completed. 

LEMMA 8. If H is a group and if x is recursive with respect to T, then 
x is recursive with respect to H. 

PROOF. Let U be a neighborhood of x. Choose neighborhoods V 
of x and W of 0 so that W= - W, F is compact and ƒ( F, W) C U. 
Since we may suppose H^T, we may also suppose that W+H^T. 
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There exists a compact set F in T such that T=F+H. Define 
E = Fni[T~(W+H)]. Now r ~ ( W + H ) = E + H . By Lemma 7, to 
each element e in E there correspond neighborhoods Ve of x and We 

of e so that/(ff, PF e+iî)n Fô = 0 . Hence, there exists a neighborhood 
V* oî x such that ƒ (x, £ + i ï ) n F * = 0 . We may suppose FCF*, 
whence/(x, £ + f l ) P i F = 0 . There exists an admissible set A in T 
such thatƒ(*, -4)C V. Hence, i4n(E+.ff) = 0 and 4̂ CWr+fir. Define 
B=£Tn(-4 + PF). Now ƒ(*, i4 + W)CI7. Since B is an admissible set 
contained in H and ƒ(#, B) C £7, the proof is completed. 

THEOREM 1. If H is a group and if x is recursive with respect to T, 
then x is recursive with respect to G. 

PROOF. The conclusion follows immediately from Lemmas 4 and 8. 

Applications. Now let T denote the additive group of either the in­
tegers or the reals with its natural topology. Then G is either T or the 
group of all multiples of a nonzero number. It is clear from Lemma 1 
that in this case H is a group. 

We consider the following six interpretations of admissibility. A 
set A in T is said to be admissible provided that: 

(1) A contains a sequence marching to + <*> ; 
(2) A contains a sequence marching to + °° and a sequence march­

ing to — oo ; 
(3) There exists a positive number p such that each interval of 

non-negative numbers of length p contains a point of A ; 
(4) There exists a positive number p such that each interval of 

length p contains a point of A ; 
(5) For each positive number €, lim supWH.+oô ~V{ U€(A)r\(0, n)} 

>0, where U€(A) is the e-neighborhood of A in T, n is an integer, 
(0, n) is the open interval with end points 0 and n, and /x denotes the 
usual measure of a set in T; 

(6) For each positive number €, lim supn^+oo "̂"1/*! U€(A)C\(Ot n)} 
>0 and lim sup^+oo?r"V{J7«(i4)n(-», 0)} >0. 

With admissibility defined as 1, 2, 3, 4, 5 or 6, then the term "re­
cursive" is replaced by "positively recurrent," "recurrent," "posi­
tively almost periodic," "almost periodic," "positively strongly recur­
rent" or "strongly recurrent," respectively. 

Theorem 1 now yields immediately the following statement. 

THEOREM 2. If x is positively recurrent, recurrent, positively almost 
periodic, almost periodic, positively strongly recurrent or strongly recur­
rent with respect to T, then x has the same property with respect to G. 
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A REMARK ON DENSITY CHARACTERS 

EDWIN HEWITT1 

Let X be an arbitrary topological space satisfying the TVseparation 
axiom [l, Chap. 1, §4, p. 58].2 We recall the following definition 
[3, p. 329]. 

DEFINITION 1. The least cardinal number of a dense subset of the 
space X is said to be the density character of X. It is denoted by the 
symbol %{X). 

We denote the cardinal number of a set A by | A | . 
Pospisil has pointed out [4] that if X is a Hausdorff space, then 

(1) | X | g 2 2 S W . 

This inequality is easily established. Let D be a dense subset of the 
Hausdorff space X such that \D\ =S(-X'). For an arbitrary point 
pÇ^X and an arbitrary complete neighborhood system Vp a t p, let 
Vp be the family of all sets UC\D, where U^VP. Thus to every point 
of X, a certain family of subsets of D is assigned. Since X is a Haus­
dorff space, VpT^Vq whenever p j*£q, and the correspondence assigning 
each point p to the family <DP is one-to-one. Since X is in one-to-one 
correspondence with a sub-hierarchy of the hierarchy of all families 
of subsets of D, the inequality (1) follows. 

I t may be remarked in passing that the inequality (1) does not 
obtain for all TYspaces. Let m be a cardinal number greater than 2C, 
where c = 2^o. Let Z be a TVspace of cardinal number m and with 
the property that the only closed proper subsets of Z are finite or 
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