
ON A PROBLEM OF KUROSCH AND JACOBSON 

IRVING KAPLANSKY 

1. Introduction. Let A be an algebraic algebra over a field K, that 
is, an algebra over K each of whose elements satisfies a polynomial 
equation with coefficients in K. In analogy to Burnside's problem for 
groups, Kurosch1 has raised the following question: if A is finitely 
generated, does it necessarily have a finite basis? Jacobson2 studied 
the question for the case where the elements of A are of bounded 
degree, and reduced it to the consideration of certain specific nil 
algebras defined as follows: A(r, n) ~F(r)—I{ry n), where F{r) is the 
free algebra generated over K by indeterminates «1, • • • , ur, and 
J(r, n) is the (two-sided) ideal generated by all nth powers in F(r). 
In this note we shall prove the following theorem. 

THEOREM 1. If K has at least n elements, A(r, n) has a finite basis. 

Thus Kurosch's question for algebraic algebras of bounded degree 
receives an affirmative answer if K is large enough, and in particular 
if it is infinite. 

In §3, by a different method suggested by Kurosch's treatment of 
w = 3, we prove that A(rt 4) has a finite basis over GF(3). In §4 we 
discuss a special case of another question proposed by Jacobson : if the 
dimension d(r, n) of A(r, n) is finite, what is its precise value? We 
show that d(2, 3) may be equal to 16 or 17, depending on K. 

2. Proof of Theorem 1. Throughout this section we shall assume 
that the coefficient field K has at least n elements. 

The algebra F{r) consists of all (noncommutative) polynomials in 
the u's with coefficients in K: that is, linear combinations of terms 
UiUjUk • • • which we shall call monomials. The degree of a monomial 
is the number of u's it contains, and a polynomial is homogeneous if 
its monomials all have the same degree. We now prove the following 
lemma. 

LEMMA 1. The ideal J(r, n) has a basis of homogeneous polynomials. 

PROOF. Specifically, I~I(r, n) has a basis consisting of all 
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Six^z16 • • • ) where x, y, z, • • • are monomials, i+j+k+ • • • = #, 
and S denotes (as it will throughout the paper) the sum of products 
taken in all the n\/i\j\k\ • • • possible orders. That these polynomials 
generate a t least I(rf n) follows from the fact that for any scalars 
û5, j3, 7, • • • , (ax+(3y+yz+ • • • )n is a linear combination of such 
polynomials. 

We show conversely that every S(x{y}'zk • • • ) is in J. We have 
T~(ax+t3y+yz+ • • • ) n £ I for any scalars a, j8, 7, • • • . Let 
Ti = Ti(a) be the sum of all terms in the expansion of T which are 
of degree i in x. Then T= XXo^^ 'Cl)* Since To and Tn are in ƒ, 
the sum from 1 to n — 1 is likewise in I . Applying this with n~\ 
different nonzero values of a, and multiplying by the minors of the 
resulting Vandermonde determinant, we see that 7 \ £ I . We now set 
a = 1 and let T^ = T^(fi) be the subset of Ti containing those terms 
of degree 7 in y; then T \= ^"ZoftTi^l). We may assume by induc­
tion on the number of terms x> y, z, • • • that 7 \o£J . Taking w—i 
different nonzero values for /?, we obtain TijÇzI. Continuing in this 
fashion, we prove that T,/*.. . = S(xlyjzk • • • ) £ I . 

Any element of F(r) may evidently be written as a unique sum of 
homogeneous polynomials, which we may call its homogeneous parts. 
From Lemma 1 we have at once the following lemma. 

LEMMA 2. Any element of F(r) is in J(r, n) if and only if each of its 
homogeneous parts is in I(r, n). 

In order to prove Theorem 1 by induction, we prove a stronger 
result. 

LEMMA 3. Suppose that B is an ideal in A =A(r, n) generated by a 
finite number of ith powers of elements of A, and that A—B is nilpotent. 
Then A is nilpotent. 

PROOF. Lemma 3 is certainly true for i = n. We make a descending 
induction on i. Suppose B is generated by yj, • • • , y^ and that 
(A— J5)Jb = 0. Let M be the set of all monomials of degree less than 
k(m + l). Let C be the ideal generated by yi*+1, • • • , ym**"\ and by 
all x*1, (y+ax)i+1, where y ranges over y^ x ranges over M, and a 
runs through i different nonzero scalars. Use of the Vandermonde 
determinant shows that 

S(y*x) = y{x + yl~lxy + • • • + xy* 

is in C. Right-multiplying by y*9 we have yixyi^C. 
We shall now show that A — C is nilpotent, whence by induction 

A is. Let t be any monomial of degree k(m + l). We may write 
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t=ziz2 • • • Zm+u with each z a monomial of degree k. Since (-4 — B)h = 0 
each z is in B and can be written as a sum of terms ay{b\ moreover by 
Lemma 2 we may assume that each of these terms ay*b has degree k. 
Now in a product of tn+1 terms, each of the form ay{bt a t least one 
y must get repeated; hence such a product contains y*xy* with x a 
monomial of degree less than k(tn + l). As shown above, yixyi^C1 

whence / £ C , and A — C is nilpotent of index a t most k(m+l). 
Theorem 1 is an immediate consequence of Lemma 3. We take the 

case i = l, B — (tiif • • • , ur)—A. The hypothesis that -4— B is nil-
potent is fulfilled, and we conclude that A is nilpotent and has a 
finite basis. 

3. The case ^ = 4. Kurosch gave a direct combinatorial proof that 
A (r, 3) has a finite basis, which, unlike the above proof, is also valid 
over GF(2). We shall show that his argument can be extended so as 
to push the case w = 4 nearer completion. 

THEOREM 2. A(r, 4) has a finite basis over GF(3). 

PROOF. Define 

ƒ(*, y, *) - (* + y + 2)4 - (* + y)* - (* + «)« 

- (y + zY + x* + y* + ^ 
Then 

#3^3 -- x2[f(xf yy x2) + ƒ(— #, y, ff2) — ff2yff2 — ff3yff] = 0. 

Hence the (two-sided) ideal generated by xz is nilpotent. More gen­
erally, any ideal B generated by a finite number of cubes is nilpotent. 
To show that A ==-4(r, 4) is nilpotent it therefore suffices to prove 
A — B nilpotent, that is, we may take any finite number of cubes to 
be zero without loss of generality. 

We may suppose by induction that the subalgebra C generated 
by Uu • • • , Ur-i has a finite basis {u}9 and let us write u for ur. 
Set uz, tiz

y and (u±U)z all equal to zero. Then uHi+ut{U+ttu2=*09 

whence for any xÇLC 

(1) u2x + uxu + xu2 = 0, 

and right-multiplying by u2 we have 

(2) u2xu2 = 0, 

Using (1) to replace uxu by — u2x—xu2 and then using (2), we see 
that any monomial containing four u'$ vanishes. This proves the 
theorem. 
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4. The order of -4(2, 3). In the case n-2, we have (x+y)2 = 0 
and hence xy—~yx for any x, y. In the case of characteristic 2, 
A(r, 2) is commutative, and its order d(r, 2) is 2r — l as observed by 
Jacobson.3 For characteristic not equal to 2, we have (xy)z = —z(xy) 
but also x(yz)~—x(zy)=*z(xy), so that xyz~0. It follows that the 
elements «*• and UiUj (i<j) constitute a basis, that is, d(r, 2) =*r+rC2 
==r+lC2* 

We shall now evaluate d{r, n) in the next simplest case: r = 2, « = 3. 
The result seems to indicate that a complete evaluation of d(r, n) 
will involve formidable combinatorial difficulties. 

THEOREM 3. If the coefficient field is GF{2) or if it has characteristic 3, 
then d(2, 3) = 17; otherwise d(2, 3) = 16. 

PROOF. From (x+y)z~0 we obtain 

(3) S(x2y) + S(xy2) = 0, 

and from 

(x + y + zy = (x + yy + (% + zy + (y + zy 
(4) 

+ S(xyz) — xz — yz — z8, 
we have 

(5) S(xyz) = 0. 

Take x — u, y=v, z = u2 in (5): 

uvu2 + uHu = 0. 

Together with 

(6) S(u2v) + S(uv2) = 0 

this gives 

(7) S(u2v) and S(uv2) are annihilated by w and v on both left and right. 

Next, by taking x — u, y=v, z = uv in (5) and using (7), we have 

(8) vuvu = u2v2, 

which implies 

(9) uvuvu = vuvuv = 0. 

From (7), (8), and (9) it is easy to see that 

(10) all monomials of degree —• 7 vanish. 
8 Loc. cit. p. 707. 
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Finally take x~uf y = v, z — uvuv in (5) and make repeated use of (7) 
and (9). We find 

(11) 3u2vuv2 = 0. 

We now assert that for K — GF(2), (6)-(ll) is an exhaustive set of 
relations on u, v; for K^GF(2)t (6) and (7) may be strengthened to 

(12) S(u2v) = S{uv2) = 0, 

and (8)~(12) is an exhaustive set of relations. To prove this it suffices 
to assume the relations in question, and show that they ensure the 
evanescence of every cube. For the latter it suffices to prove that the 
cube of any monomial vanishes and that (3) and (5) hold for any 
monomials x> y> z. By (10), there are only a finite number of verifica­
tions to make; we omit the details of the computation. 

We can now make a list of basis elements. It is convenient to note, 
by systematic use of (7), that candidates for basis elements of degree 
not less than 4 need contain u2(v2) only at the beginning (end). 

Degree 
1 
2 
3 
4 
5 
6 

u, v 
U2, UV, VU, V2 

u2v, uvuy vuvt uv2 [add vu2 for K = GF(2)] 
u2v2, uvuv, u2vu, vuv2 

u2vuvy uvuv2 

u2vuv2 [characteristic 3 only]. 

Added in proof: Professor Jacobson has pointed out to me that (by 
§9 of his paper) an affirmative answer to Burnside's problem for 
fourth powers would imply that A(r, 4) has a finite basis over GF(2)% 

and thus complete the case n = 4. Moreover the known affirmative 
answer for the case of two generators shows that d(2, 4) over G-F(2) 
is finite, and has the explicit (though probably much too large) upper 
bound of 1024. 
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