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The writer first saw Birkhoff in the fall of 1914. The graduate stu­
dents were meeting the professors of mathematics of Harvard in 
Sever 20. Maxime Bôcher, with his square beard and squarer shoes, 
was presiding. In the back of the room, with a different beard but 
equal dignity, William Fogg Osgood was counseling a student. Dun­
ham Jackson, Gabriel Green, Julian Coolidge and Charles Bouton 
were in the business of being helpful. The thirty-year-old Birkhoff 
was in the front row. He seemed tall even when seated, and a friendly 
smile disarmed a determined face. I had no reason to speak to him, 
but the impression he made upon me could not be easily forgotten. 

His change from Princeton University to Harvard in 1912 was de­
cisive. Although he later had magnificent opportunities to serve as a 
research professor in institutions other than Harvard he elected to 
remain in Cambridge for life. He had been an instructor at Wisconsin 
from 1907 to 1909 and had profited from his contacts with Van Vleck. 
As a graduate student in Chicago he had known Veblen and he con­
tinued this friendsip in the halls of Princeton. Starting college in 
1902 at the University of Chicago, he changed to Harvard, remained 
long enough to get an A.B. degree, and then hurried back to Chicago, 
where he finished his graduate work in 1907. 

It was in 1908 that he married Margaret Elizabeth Grafius. It 
was clear that Birkhoff depended from the beginning to the end on 
her deep understanding and encouragement. Her varied talents and 
charm were reflected in the overflowing hospitality of their home. 
Their children, Garrett and Barbara (Mrs. Robert Treat Paine, Jr.) 
are well known to friends of Birkhoff. 

Birkhoff admired Moore of Chicago, but not to the point of imitat­
ing him. He respected Bôcher no less, and did him the honor next to 
Poincaré of following his mathematical interests. F. R. Moulton's 
study of the work of Poincaré had something to do with BirkhofFs 
own intense reading of Poincaré. Poincaré was Birkhoff's true teacher. 
There is probably no mathematician alive who has explored the works 
of Poincaré in full unless it be Hadamard, but in the domains of 
analysis Birkhoff wholeheartedly took over the techniques and prob­
lems of Poincaré and carried on. 

BirkhofFs loyalty to Harvard was complete and only occasionally 
critical. The response of the non-mathematical members of the faculty 
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to his early successes was slow at first and he felt this. But he did not 
wait long before he was recognized by the University as a whole. I t 
is a mark of the intellectual distinction of President Lowell that he 
hailed Birkhoff as one of Harvard's greatest men and honored him 
accordingly. He was made Perkins Professor of Mathematics and 
served a t one time as Dean of the Faculty of Arts and Sciences. 
Birkhoff's colleagues in mathematics a t Harvard were as one in their 
admiration of him and affection for him. 

Unlike his colleague Osgood, Birkhoff thought of his contempo­
raries in Europe, particularly in Germany, as colleagues rather than 
as teachers. He held Klein lightly, was unenthusiastic over Weier-
strass, but gave his full respect to Riemann. Through his papers on 
non-self-ad joint boundary value problems and asymptotic representa­
tions he probably influenced the Hubert integral equation school as 
much or as little as it influenced him. His relations with the members 
of the French and Italian schools of analysis were close, both per­
sonally and scientifically. Levi-Civita and Hadamard were among his 
best friends. Birkhoff was at the same time internationally minded and 
pro-American. The sturdy individualism of Dickson, E. H. Moore and 
Birkhoff was representative of American mathematics "coming of age." 
The work of these great Americans sometimes lacked external sophis­
tication, but it more than made up for this in penetration, power and 
originality, and justified Birkhoff's appreciation of his countrymen. 

Much has been said about Birkhoff's teaching, and each of his pu­
pils will have his tale. There is one thing which may be noted in gen­
eral: that there is an excellent correlation between the more distin­
guished Ph.D.'s from Harvard and those who were inspired by Birk­
hoff's teaching. Among his "tutees" there was an unanalyzed appreci­
ation of Birkhoff's ability to transform a subject into something alive, 
and a deep gratitude for his painstaking personal effort with them. 
He never consciously descended to the level of the untutored, nor 
gave them evidence that he was aware of his own relative elevation. 
He often improvised in an exposition, thereby illuminating many 
things besides the immediate theorem. He once said that if his liveli­
hood depended upon it he would vie with those most perfect in ex­
position. Those who knew him best will agree that he could have done 
so and successfully. This demonstration however was never de­
manded. 

In his social and political views, he was detached from the world 
about him and this was sometimes a source of misunderstanding. 
Proceeding from the dynamic individualism of the Middle West to 
an environment of tenacious self-sufficiency in New England, he un-
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derstood and interpreted both as conditions for living. His philosophy 
of life was intellectual rather than emotional. His own conduct of 
life was extraordinarily well integrated, and free from manifestations 
of eccentricity. He showed his individualism most clearly in the broad 
range of suppositions which he could entertain and on which he could 
vividly speculate. The fact that these speculations were disassociated 
from his own life was one of the reasons why his extreme detachment 
was possible. He chose to be brief and simple, but not explanatory. 
He could examine a point of view as if it were his very own and later 
reflect with equal appreciation on an opposite point of view. A hearer 
who did not understand this range of his speculations could easily 
receive incorrect impressions of Birkhoff's views. To understand 
Birkhoff one had to weigh and average his conclusions over a long 
range of circumstances. BirkhofFs separation of thought and action 
was a part of his conscious desire to fight only one battle, the battle 
of mathematics. 

Birkhoff was uncompromising in his appraisal of mathematics— 
by the test of originality and relevance. For him the systematic or­
ganization or exposition of a mathematical theory was always second­
ary in importance to its discovery. I recall his remarks on a mathe­
matical treatise that had come to his attention and eventually had 
a wide circulation but which he did not regard as original. Birkhoff 
said "I read this book through in a half hour." His choice of topics 
of investigation could be called objective rather than subjective. 
His problems were not necessarily chosen from among those which 
he could solve; indeed many of his papers from 1920 on were on prob­
lems which he left unsolved. Some of the current mathematical theo­
ries were regarded by Birkhoff as no more than relatively obvious 
elaborations of concrete examples. 

The major interest in Birkhoff in the future will undoubtedly center 
about his mathematical theories and this report is devoted to their 
exposition in brief.1 

Popular opinion focuses attention on two striking achievements, 
his proof of Poincare's Last Theorem and the Ergodic Theorem. 
By contrast much of his other work is obscured. Important as they 
are, it is to be doubted whether either of the above theorems is more 
substantial than other phases of his work. His magnificent theory of 
the generalized Riemann problem, his contributions to difference 
equations, his formal theory of stability in dynamics, and the con-

1 In reviewing the research of Birkhoff the writer has had the assistance of Dr. 
Pesi Masani, particularly in the study of Birkhoff's early work. 
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sequent geometrical theory, all involve structures upon which much 
can and probably will be built. 

In the domain of transitivity in which the Ergodic Theorem lies, 
the basic hypothesis of metric transitivity remains a conjecture as 
far as analytic dynamical systems of classical type are concerned. 
The relative importance in mathematics of statistical or symbolic 
dynamics can hardly be assessed until it is known whether or not 
topological transitivity in an analytic system implies metric trans­
itivity. The importance which Birkhoff attached to symbolism in 
dynamics is made evident by the fact that his last papers on dynamics 
were largely concerned with the search for a general symbolism char­
acterizing a dynamical system. 

Birkhoff's first paper [ l ] 2 was written with H. S. Vandiver under 
the title On the integral divisors of an — bn. Birkhoff was eighteen and 
Vandiver twenty. An immediate consequence of the principal theo­
rem was that there are an infinity of primes congruent to 1, mod w, a 
result known to Kronecker, Hubert and Sylvester. The principal theo­
rem is new. One consequence of this collaboration was the high regard 
for Vandiver's work which Birkhoff held throughout his life. 

To continue with a systematic review of Birkhoff's work it will be 
convenient to divide his papers into six principal groups. Various sub­
jects such as the four-color problem will be referred to separately. 

I. ASYMPTOTIC EXPANSIONS, BOUNDARY VALUE PROBLEMS, 

STURM-LIOUVILLE THEOREMS 

(a) Asymptotic expansions and boundary value problems. The years 
of Birkhoff's graduate study were major years in the development of 
integral equations. Parallel developments in terms of Green's func­
tions were of great interest. Self-adjoint problems corresponding to 
symmetric kernels had been extensively studied, but when n>2 the 
case of a non-self-adjoint operator 

dnz dn"h 
L(z) = — + * + p2(x) ~ + • • • + pn(x)z 0 g x^b) 

dxn dxn~2 

had not been adequately treated. 
The n boundary conditions in [3 ] 

(1.1) Wi(u)~0 ( f - l f . - . , » ) 

were linear and homogeneous in u and its first n — 1 derivatives taken 
a t x —a and x = &, and were linearly independent. The functions pi(x) 

2 Numbers in brackets refer to the Bibliography at the end of this paper. 
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with all their derivatives were assumed continuous on the closed in­
terval (a, b). The operator M(z) adjoint to L(z) was defined in the 
classical way. With L{u) and the conditions (1.1) Birkhoff was the 
first3 to associate the adjoint boundary conditions 

Vi(v) = 0 ( f - 1, . . . , n ) 

in the now accepted manner. The parameter X was introduced, giving 
the "problem" 

(1.2) L(u) + \u = 0, Wi(u) = 0 (f - 1, • • • , n) 

and the adjoint problem, 

(1.3) M(v) + \v = 0, Vi(v) = 0 (t = 1, • • • , »). 

In a paper [2] which constituted the first part of his thesis, Birk­
hoff had given an elegant asymptotic representation of solutions of 
differential equations of the form 

dnz dn"~"^z 
(1.4) h pan-i(x, p) + • • • + pna0(x, p)z = 0 

dxn dxn~l 

for large values of | p | . The differential equations in (1.2) and (1.3) 
took the form (1.4) on setting X = pn . With the aid of these asymptotic 
representations Birkhoff proved the existence of an infinite sequence 
Xi, X2, • • • of characteristic values with corresponding solutions 

ui(x)} u2(x)9 • • • , 

vi(x), v*(x), • - • 

of (1.2) and (1.3) respectively. He was able to do this by imposing 
certain determinant conditions on the coefficients in the boundary 
conditions. 

The function f(x) to be expanded was assumed real and piecewise 
continuous with a continuous derivative. In the case in which the X»-
are zeros of the first order of the determinant A(X) defining the char­
acteristic roots, the expansion 

00 

(1.5) ^CiUi{x) 

in which 

_ faf(x)Vi(x)dx 

fh
aUi{x)vi(x)dx 

3 As stated by Bôcher, Applications and generalization of the conception of adjoint 
systems, Trans. Amer. Math. Soc. vol. 14 (1913) pp. 403-420. 
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converges (as does a Fourier expansion) to 

/(* + 0)+/(*~0) 
2 

a t each inner point of (a, b), to 

aif(a + 0) + a2f(b - 0) 

a t x = a and to 

bif(a + 0) + b2f(b - 0) 

a t x = b where aif a2l blt b2 are constants, independent otf(x). In case 
Xt- is not a zero of the first order of A(X) the corresponding term in 
(1.5) is to be replaced by a term readily defined with the aid of the 
Green's function. The proof of the convergence depended, as with 
Poincaré, on the method of contour integration in the X-plane. 

The interest in this work of Birkhoff is signaled by a historic inter­
change between Birkhoff and J. D. Tamarkin. Tamarkin had inde­
pendently worked out asymptotic representations similar to those of 
Birkhoff without publishing them, and was prepared to treat the 
problem of Birkhoff when he received reprints from Birkhoff. Birk-
hoff's papers were published in 1907 and 1908 respectively and 
Tamarkin's paper4 was published in 1912. In this paper Tamarkin 
stated that he found Birkhoff's reasoning brief, and on certain points 
insufficient. I t should be stated that Birkhoff had treated the case 
of an even n in detail and had indicated the proofs when n was odd. 
In twelve pages in [ó] Birkhoff showed that his earlier proofs could 
be carried through in general. In a note5 in the Rendiconti, Tamarkin 
reviewed the matter a t issue and accepted Birkhoff's supplementary 
proof. 

Problems similar to those treated in [2] and [3] were taken up at 
length in Birkhoff's and Langer's paper [8] where the case of a sys­
tem of ordinary differential equations was treated. In this paper may 
be found references to extensions of the theory by Hopkins and 
Wilder, pupils of Birkhoff. 

(b) Separation and comparison theorems. The existence of charac­
teristic roots in boundary value problems in the plane and the oscilla­
tion properties of characteristic functions are treated in [4] follow-

4 J. D. Tamarkin, Sur quelques pointes de la théorie des équations différentielles 
linéaires ordinaries et sur la generalization de la serie de Fourier, Rend. Cire. Mat. 
Palermo vol. 24 (1912) pp. 345-382. 

6 J. D. Tamarkin, Sur un problème de la théorie des équations différentielles linéaires 
ordinaires, Rend. Cire. Mat. Palermo vol. 37 (1914) pp. 376-378. 
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ing the methods of Sturm, Liouville, and Bôcher (# = 1). The exist­
ence of infinitely many characteristic roots is established in the 
self-ad joint case and a general oscillation theorem is obtained. 

Around 1930 the new techniques auxiliary to the "variational the­
ory in the large" opened up the separation-comparison-oscillation 
theory for self-adjoint systems of n second-order ordinary linear dif­
ferential equations. The Sturm separation theorem was generalized 
by the theorem that the conjugate points on an arbitrary interval J 
of a point x = a of the #-axis differ in number by at most n from the 
conjugate points on J of a point x = &. The boundary conditions were 
expressed in terms of a minimum set (u) of parameters and an acces­
sory quadratic form q(u) defined in the second variation. A necessary 
and sufficient condition for the existence of infinitely many charac­
teristic roots was obtained. 

In these terms it was possible for the first time to give a systematic 
classification of the possible separation, comparison and oscillation 
theorems, and with the aid of Morse's "index form" to establish the 
principal results. In [9] Birkhoff and Hestenes turned from the older 
methods of Sturm to the new methods, adding an isoperimetric inter­
pretation to the proofs. A detailed review of [9] is here impossible. 
Fortunately, a recent "hour address" by W. T. Reid6 covers this field 
in an excellent manner both historically and mathematically, and the 
interested reader is referred to this address. 

In a short note [7] in 1917 Birkhoff gave a simple condition that a 
normalized set of orthogonal functions Ui(x) be closed, and applied 
this to Sturm-Liouville series. The principle involved in the applica­
tion could be stated as follows: any set of orthogonal vectors in a 
functional space lying near enough (in a sense defined by Birkhoff) 
to a complete set in that space is itself complete. Birkhoff was here 
sampling a great theory, a theory in which the name of his pupil and 
colleague Marshall Stone was later to become illustrious. 

Perhaps the most remarkable of the contributions of Birkhoff in 
the domain of separation and comparison theorems is in [5] and con­
cerns an ordinary third order linear differential equation. This equa­
tion does not lend itself to treatment by the Sturmian methods nor 
has it yet been effectively brought into the domain of the variational 
theory. A solution 

y<(«) (*' = 1. 2, 3) 

is thought of as a curve in a 2-dimensional projective space. Birkhoff 

6 W. T. Reid, Boundary value problems of the calculus of variations, Bull. Amer. 
Math. Soc. vol. 43 (1937) pp. 633-666. 
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utilizes the projective differential geometry of Darboux and Wilcyn-
ski and by elegant methods far removed from all other methods 
arrives a t theorems very similar to the classical ones. This part of 
the field deserves further study. 

II . LINEAR DIFFERENTIAL EQUATIONS AND THE 

GENERALIZED RlEMANN PROBLEM 

With Gauss, Riemann, and Poincaré leading the way, ordinary 
linear differential equations of the second order of Fuchsian type have 
been studied by almost every analyst of note. In mathematical 
physics, equations of this type bear the name of Bessel and Legendre. 
In complex function theory such equations lead by way of conformai 
mapping to the elliptic modular and automorphic functions. In real 
function theory integral relations such as7 

ƒ> 00 

{4( / ) 2 - y*/x*}dx > 0 (y(0) = 0) 

o 
are typical of a class of relations which arise8 from Fuchsian differ­
ential equations with two singular points. Much of Bochels research 
was concerned with these equations. I t was natural therefore that 
Birkhoff should try his hand in this central field. 

Departing somewhat from the order in which Birkhoff's papers on 
this subject appeared we refer first to [l 1 ] on A simplified treatment of 
the regular singular point. At a regular singular point the canonical 
solutions have singularities (if any) of a well known type. This fact 
had been previously proved by the method of Frobenius, whereby 
the coefficients of a formal solution were first obtained and the solu­
tion then proved convergent. Birkhoff gives a direct proof, without 
use of a series expansion, and this proof is barely two pages in length. 

Birkhoff was not content with this achievement. Linear differen­
tial systems with irregular singular points presented a field of great 
difficulty and next challenged his attention. 

No mathematician of BirkhofPs day possessed greater facilitiy in 
combining formal algebraic methods with penetrating numerical 
analysis. Birkhoff needed all of this power in attacking the irregu­
lar case. Thome was his predecessor in using formal solutions of a 
general type. Poincaré and Horn9 had effectively introduced asymp-

7 Hardy, Littlewood, Pólya, Inequalities, p. 175. 
8 Marston Morse and Walter Leighton, Singular quadratic Junctionals, Trans. 

Amer. Math. Soc. vol. 40 (1936) pp. 252-286. 
9 See Birkhoff's papers for references. References which may be found in the papers 

of Birkhoff are generally omitted. 
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totic representations. Birkhoff had used formal series and asymptotic 
representations in the study of boundary value problems. Hubert 
and Plemelj, prior to Birkhoff and unknown to Birkhoff, had already 
solved one of the matrix problems relevant to the theory. Cunning­
ham had generalized Poincaré's use of Laplace transformations in re­
ducing the problem. 

There was thus a great technique available to Birkhoff when he 
began his research. But with all this power no one had carried the 
theory through to a triumphant end. Birkhoff in [10, 13] took up the 
problem with typical boldness. He added the concepts of canonical sys­
tems of differential equations and of equivalence of such systems. He 
carried through the asymptotic representation of the matrix solution in 
the general irregular case, enumerated the essential "characteristics" of 
a singular point of arbitrary rank, defined and solved the ugeneralized 
Riemann problem." 

Such were BirkhofFs achievements in this field. Although any ex­
plicit formulation is complicated, it is needed if the reader is to sense 
the depth of BirkhofFs mastery and skill. 

The differential equations can be represented in the form 

dyi 
(2.1) —- = aijizjyt (i, j = 1, • • • , n) 

dz 
using the summation convention for repeated indices. Here z is a 
complex variable, and yi(z) the unknown ith component of a solution 
(y). In any local study the singular point can be taken as the point 
z = 00. The functions aa(z) are assumed analytic at z= <*> except at 
most for poles. The maximum order of these poles is denoted by q 
and q+1 is termed the rank of the singularity z= 00. When q< — 1 
the singular point is ordinary. When q = — 1 the point is regular, and 
when q^O irregular. The irregular case 3 = 0 had been reduced to the 
regular case q = — 1 by Poincaré on using a Laplace transformation 
of the variables (y)f and Poincaré had indicated a possible reduction 
of the irregular case q>0. 

To simplify the system (2.1) Birkhoff uses linear transformations 
of the form 

(2.2) Ui = Cij(z)yj (i, j = 1, • • • , n) 

in which the functions Ca(z) are analytic at infinity and have there 
a non vanishing determinant. Any system into which the system (2.1) 
goes under (2.2) is said to be equivalent to the system (2.1) a t infinity. 
Birkhoff shows that a system (2.1) of rank g + 1 ^ 0 is equivalent to a 
canonical system 
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(2.3) zyl = qij{z)yj (i, j = 1, • • • , n) 

again of rank q+lin which q%j(z) is a polynomial of degree at most q+1. 
In proving this theorem Birkhoff used a lemma on analytic mat­

rices [12]. Unknown to Birkhoff at the time, this lemma followed 
from general theorems of Hubert and Piemel j . The canonical systems 
(2.3) are of great value in formally reducing the complexity of the 
system. 

With Thomé, n formal solutions each of the type 

(2.4) y4 = e^z)z^Bi{z) (i = 1, - • , n) 

are next determined. Here Bi(z) is a formal series of nonpositive pow­
ers of z such that at least one of the n constant terms (i = 1, 2, • • • , n) 
is not zero while p(z) is of the form 

azq+l Qzq 

(2.5) p(z) = _ — + — + . . . +Xs. 
q +1 q 

The coefficient a is a characteristic root of the matrix of coefficients 
of zq+l in the polynomials q%j(z). These roots a* are assumed distinct. 
For each of the n formal solutions there is thus a polynomial p(z), 
an exponent p, and a formal series Bt{z). These solutions with 
j = l , • • • , n may be chosen so that their determinant |j5t-/(oo)| 5^0. 

By making generalized Laplace transformations of the variables yi 
in (2.3) together with other linear transformations of elementary 
character, Birkhoff shows that the rank of the differential system at 
its different singular points can be reduced step by step until the 
system is regular. This process leads to solutions in the form of gen­
eralized Laplace integrals. Each of these integrals is asymptotically 
represented by a formal solution of the type (2.4) in an appropriate 
"sector" of a neighborhood of z = 00. These sectors are bounded by 
the m=*n(n — l)(q+l) rays on which (i? = real part) 

R[**K"i - « / ) ] - 0 (i ^ j ; i, j = 1, • • • , »). 

A base Wr of these solutions can be chosen in the rth sector 
(r*=l, • • • , m) so that the base Wr* belonging to the succeeding 
sector is obtained from the base Wr by multiplying Wr on the right 
by a matrix of the form I+Cr, where J is the unit matrix and Cr is a 
matrix with just one non-null element cr. 

These "transformation constants" Ci9 • • • , cmi together with the n 
exponents /*< and the n(q+l) constants 

(2.6) (aitPi, • • • ,X,) (t » 1, - • • f ») f 
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of which the ith set appears in the ith solution of a formal matrix 
solution, are termed by Birkhoff the characteristic constants of the 
singular point a t infinity. With these constants given he shows that 
there exists a locally defined canonical system (2.3) to which these 
constants will be equivalent in the above sense. 

The preceding theorem completes the local analysis and Birkhoff 
turns next to the problem in the large. Let 5 be a differential system 
of the type (2.1) with at most a finite number of regular or irregular 
singular points 

(2.7) ai, • • • , ah 

of ranks 

(2.8) qu • • • , qk 

respectively. Corresponding to a base Y of solutions of S there exist 
matrices T*i, • • • , T* of constants such that Y is replaced by YTi 
when a positive circuit of a»- is made. The matrices Ti generate the 
monodromic group G with a relation 

(2.9) T \ . . . n = i 

corresponding to a circuit which encloses the points (2.7). 
Birkhoff says that two matrices Y\(z) and F2(s) whose elements 

are analytic in the vicinity of z — a are properly equivalent a t s = a if 

(2.10) Fi(s) =A(z)Y2(z) (Z7*a) 

and A (z) is a matrix of elements analytic atz=a with | A (a)\ 9*0, and 
improperly equivalent if (2.10) holds and the elements of A(z) are 
analytic a t z = a except a t most for poles. He then proves the follow­
ing theorem: 

Let ai, • • • , ah be k given points. Let 7\, • • • , 7* be matrices of con­
stants such that (2.9) holds. Let Zi(z) (i = l, • • • , k) be matrices of 
functions, analytic of determinant not zero in the vicinity of z~ai and 
undergoing a transformation to Zi(a)Ti as z makes a positive circuit of a^ 
There exists a matrix Y(z) of functions not zero for z^ai, • • • , ah and 
analytic save at these points, which undergoes a transformation to YTi 
as z makes a positive circuit of a^, furthermore Y(z) is properly equiva­
lent to Ziat ai (i~l, • • • , k — 1) and properly or improperly equivalent 
to Zh at ah. 

This theorem contains as a special case a theorem of Hubert and 
Plemelj in which the TVs are given but not the Z / s , while Y(z) is 
affirmed to exist and possess elements which are analytic to finite 
order. The above theorem of Birkhoff gives a first type of generaliza-
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tion of the Riemann problem. A second type of generalization which 
includes two problems proposed by Riemann is formulated by Birk­
hoff as follows. 

To construct a system of linear differential equations of the first order 
with prescribed singular points (2.7) and with a given monodromic group, 
the characteristic constants being assigned for each singular point. 

In order that a solution exist it is necessary that the relation (2.9) 
hold and that the elementary divisors of Ti be those of the trans­
formation matrix determined at a* by the "transformation constants" 
belonging to a*. When these conditions are satisfied Birkhoff shows 
that the problem admits a solution provided one replaces the expo­
nents in (i — 1, • • • , n) belonging to some one of the singular points 
by new exponents /*»+$ where 5 is a suitable integer independent of i. 

This concludes Birkhoff's memorable work on differential systems. 
A byproduct was a number of theorems on the representation of ana­
lytic matrices. Birkhoff returned to this subject in a paper [14] on 
Infinite products of analytic matrices where he generalized the theo­
rems of Weierstrass and Mittag-Leffler on the representation of an 
analytic function by an infinite product. 

I I I . LINEAR DIFFERENCE EQUATIONS 

In his study of the Riemann problem Birkhoff had mastered and 
extended the use of formal solutions and asymptotic representations. 
He had used the formal expansions not only to obtain asymptotic 
solutions but to find the invariant characteristics of the singular 
points and the a priori limitations on the monodromy group. This use 
of formal solutions was to remain characteristic of his mode of at­
tack in a t least three other main fields, linear difference equations, 
stability in dynamical systems, and surface transformations with an in­
variant integral. The underlying analogies were great but the innova­
tions which remained to be made in each case were much greater and 
would discourage most mathematicians. 

In his Fifty years of American mathematics [54] Birkhoff writes that 
it was the lectures of Van Vleck a t Wisconsin on difference equations 
that led him to an appreciation of the open problems in this field. 
The thesis of Carmichael in 1911 under Birkhoff a t Princeton was 
perhaps the first significant American contribution on difference equa­
tions. Birkhoff's own work began with [15], published in 1911 in a 
volume of the Transactions that also contained Carmichael's thesis. 

Birkhoff [lS] dealt10 with a system of n linear homogeneous differ-
10 The writer is indebted to C. R. Adams for a summary of Birkhoff's work on 

difference equations. 
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ence equations of the first order rather than with a single equation 
of the nth order studied by Carmichael. The system was assumed reg­
ular in the sense that the characteristic roots were simple and neither 
0 nor oo. In matrix form the system took the form 

Y(x+1) ~A(x)Y(x) (\A(x)\fàO) 

with A (x) a square matrix of rational functions. Two formal matrix 
solutions arose 

A-Kx)A~l(x + 1) • • • , 
A(x - l)A(x - 2) • • • 

leading to two "principal solutions" Y+(x) and K.(#). These princi­
pal solutions were analytic except for poles in the finite #-plane, and 
were asymptotically represented in the left and right hand planes re­
spectively by formal solutions. Results similar in character to these 
had been established by Nörlund and Galbrun a few months earlier 
using methods based on Laplace transformations. 

The matrices of constants which are used in the theory of linear 
differential systems are here replaced by matrices P(x) of functions 
with a period 1. In particular a matrix P(x) of this type was deter­
mined such that 

Y4x) « r+(*)P(*). 
The "characteristic constants" of the system include the constants in 
P(x) and certain other constants defined by formal solutions in series 
form. The "generalized Riemann problem" was to determine a system 
of difference equations whose principal solutions have the given char­
acteristic constants. Properly modified, this problem and its analogues 
for g-difference equations were solved in [13]. 

The irregular case remained unsolved at this time although Adams 
had carefully examined the extent to which Birkhoff's methods so far 
published were sufficient. In [16] (1930) Birkhoff presented a com­
plete solution of the formal problem with strong analogies with the 
corresponding solution in differential equation theory. His last major 
paper [17] in this field was a significant collaboration with Trjitzinsky 
which extended and modified BirkhofFs earlier methods introducing 
new devices adequate for the analytic treatment of the general ir­
regular case. 

Birkhoff's writings in this field occurred in two short periods seven­
teen years apart. His interest in the field remained keen throughout 
his life as is shown by the doctoral theses written under him. His 
students in this field include R. D. Carmichael and K. P. Williams 
at Princeton; P. M. Batchelder, C. R. Adams, O. E. Lancaster, P. C. 
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Guenther and Jeanne S. LeCaine at Harvard. The last two students 
received their degrees in 1941. 

IV. DYNAMICAL SYSTEMS 

As with Poincaré the history of Birkhoff's researches in dynamics 
is one of successes which are partly complete and partly incomplete. 
The grand aim was to give a formal normal reduction of a dynamical 
system which distinguishes equilibrium points as to stability, and en­
ables one to pass from these forms to a complete qualitative charac­
terization of the system. Hamiltonian and Pfaffian systems formed 
the central core with the restricted problem of three bodies [20, 32, 
39] a typical example. The formal aspects of Birkhoff's research in 
dynamics may be regarded as relatively complete. Normal forms of 
great generality were obtained. 

On the qualitative side Birkhoff's success was unconditional in 
many important phases. His central and recurrent motions belong to 
a theory which is valid for systems with any degree of freedom. His 
ergodic theorem is, however, conditioned in its usefulness by the un­
certainty as to the hypothesis of metric transitivity. By far the 
greater part of his qualitative analysis was restricted to systems with 
two degrees of freedom, m = 2; this is inherent in his dependence on 
"regular surfaces of section" whose existence seems likely for m = 2 
but is in general unproved, and whose existence for tn>2 is doubtful. 
Assuming metric transitivity and the existence of surfaces of section 
(m = 2) he is able to reveal an astonishing range of ordered but intri­
cate dynamical phenomena; in this he is close to realizing a complete, 
qualitative characterization. 

As did Poincaré, Birkhoff seeks to make the periodic orbits central 
in the theory. Poincaré's conjecture that these orbits are everywhere 
dense in phase space turns out to be false in special cases but is be­
lieved true in general for m = 2. Poincaré was stopped by the inade­
quacy of his method of analytic continuation of these orbits. In a 
series of studies Wintner11 and others have penetrated deep into the 
mystery, but in the general case much remains to be done. It is the 
conjecture of the writer that the method of topological continuation12 

which Birkhoff does not use may be an essential key to the situation. 
We shall continue with a summary of various aspects of Birkhoff's 
theory. 

11 A. Wintner, Grundlagen einer Genealogie der periodischen Bahnen im restringierten 
Dreikörper Problem, Math. Zeit. vol. 34 (1931) pp. 321-349, 350-402. 

12 See Marston Morse, The calculus of variations in the large, Amer. Math. Soc. 
Colloquium Publications, vol. 18, New York, 1934, chap. 9. 
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(a) Formal dynamics. In general form a dynamical system is locally 
defined by differential equations [26] 

dxi 
(4.1) — «= Fi(xlt • • - , * » ) (i = 1, • • • , n). 

at 
The functions Fi are assumed analytic in the neighborhood of an ini­
tial point (#°). Hamiltonian systems have the special form 

dpi dH doi dB 
(4.2) — = , — ( i = l , • • • , m ) 

^ agi d/ ö^i 
where i f is a function of 2m variables 

(pi, • • * 1 ^wî ?i, • • • » £m). 

Pfaffian systems are defined by the Euler equations of an integral 

(4.3) I [Xj(xh • • • , Xam)xj +Z(Xi, • • • , 32»)]<« 

*n the variational problem in nonparametric form in the space 
(xiy • • • , X2m, t). In order to be able to solve the Euler equations 
for the x/ it is assumed that the determinant of coefficients of these 
variables in the Euler equations is not zero. The Hamiltonian and 
Lagrangian equations also admit the Hamilton and Jacobi variational 
forms. 

Birkhoff speculates on the meaning of these variational forms. 
His views seem to have evolved somewhat with the passage of time. 
In [26] he points out that these variational forms have no "special 
significance" near a point which is not a point of equilibrium. At a 
point (#°) of equilibrium 

(4.4) F«(*<9 = 0 ( t - 1, • • • f n) 

in (4.1). He indicates the formal convenience of the variational form 
when a transformation of coordinates is to be made. He later shows 
[25] that the Hamiltonian form is one to which (4.1) can be formally 
reduced neighboring a point of completely formal stability of general 
type (to be defined later) provided the formal transformations used 
are sufficiently general in character. Finally in 1943 [44, p. 310] he 
writes as follows: 

"I t is only the fact that there is a single explicit variational form 
available in the entire domain of the independent variables that is 
really significant. Possibly this interesting situation indicates that the 
basic importance of variational principles will be found to be topologie 
cal" (Italics are Birkhoffs.) 
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The situation is relatively clear in ordinary dynamics. The writer 
wonders in what form topology will first appear in quantum me­
chanics. 

Most of Birkhoff's work is concerned with systems (4.1) which in­
volve t in the functions Ft. This occurs whenever a periodic13 orbit 
Xi=Xi(t) is given and one then makes a change of coordinates 

%i = %i(t) + %i (i » 1, • • • , n). 

Starting with (4.1) in its original form this transformation leads to a 
new function Fi of (x) and of / as well, which vanishes at the origin 
in the space (x) for all values of /. The origin (x) = 0 is then termed a 
point of generalized equilibrium. 

Neighboring such a point the modified system (4.1) is subjected 
to formal transformations in which Xi is replaced by a formal series 
in new variables yi with coefficients which are analytic and periodic 
in /. These coefficients are permitted to have complex values but in 
such cases the transformation is to be such that the new variables yi 
can be arranged in pairs which are formally conjugate in terms of the 
original real variables. In the case of the Hamiltonian system the 
new variables (pi, q7) are taken as conjugate. 

Corresponding to an equilibrium point the equations14 of variations 
of (4.1) can be brought to a canonical form. In the so-called general1* 
case this canonical form is 

dyj 
(4.5) = \jy3' (j not summed = 1, • • • , n) 

dt 
where the X/s satisfy no relation 

m{Ki + • • • + ntn\n + *»n+i(— 1)1/2 = 0 

in which the m/s are integers not all zero. In the case of the Hamil­
tonian or Pfaffian system the multipliers can be grouped in m pairs 

(Xi, — Xi), • • • , (Xw, — Xm) 

where the X/s are either real or pure imaginary. With this under­
stood a prime result of Birkhoff is as follows [26]. 

By suitable formal (generally divergent) transformations a Hamilto­
nian or Pfaffian system with a generalized equilibrium point of "general" 
type at the origin may be taken into a normal Hamiltonian form in which 

13 It will be convenient to take this period as 2w throughout. 
14 Involving the terms of first order in (4.1). 
16 The "general" case is referred to throughout in this sense. 
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H{py q) is a formal power series in the products {piq%) starting with the 
quadratic terms 

(4.6) \jpjqj (j = 1, • • • , m). 

The case in which H reduces to the quadratic terms (4.6) is termed 
degenerate. Birkhoff is largely concerned with a "generalized equilib­
rium point" of "general" type with a "non-degenerate" Hamiltonian 
function H, as these terms have been defined. 

The representations (4.1) which have been described are local. The 
whole of "phase space" is supposed "covered" by a finite number of 
such local representations each defined in a region of a space of pa­
rameters (x). The phase space M is here supposed to be compact. A 
transformation T of M is defined in which each point P corresponds 
under T to the point Pt on the trajectory through P. The origin for 
t is so selected that P0=P. This one-parameter family of transforma­
tions T is called a flow. In the case of certain systems (that is, Hamil­
tonian systems) there exists an integral of the form ƒ( V) where F is a 
measurable subset of M such that 

f(V) = f(T(V)) 

where T( V) is the image of V under T. The integral ƒ( V) is then 
termed invariant and the system conservative. The integrand of ƒ is 
supposed positive and may ordinarily be taken as analytic. 

Various types of stability are met, and these must be carefully dis­
tinguished. Historically, one of the most important is the property 
of a conservative system whereby the images of any open region R 
under the flow intersect R for values of / which cluster at 00. 

First order formal stability is defined relative to a generalized equi­
librium point of a Hamiltonian or Pfaffian system. It requires that 
the multpliers X< be purely imaginary. 

Formal trigonometric or complete stability occurs as follows. Let T 
be a time interval, m any positive integer, P8 any polynomial in (x) 
with coefficients analytic and periodic in / and of lowest degree s. 
It is then possible, for e>0, to approximate P«, for time intervals 
less than T, with an error numerically less than Mem+8 with a suitably 
chosen sum, 

N 

X) (A j cos kjt + Bj sin kjt) (k{ - ft, > k > 0) 

in which Af, N, k are constants dependent only on m and P« (̂ o = 0). 
(A) // is a capital result of Birkhoff that first order formal stability 

of Hamiltonian or Pfaffian systems in the case of a point of "generalized 

file:///jpjqj
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equilibrium" of "general" type implies formal trigonometrie stability 
[26]. 

(b) Recurrence and transitivity. A subset S of the phase space M 
which is carried into itself by the "flow" on M is called invariant. A 
point P of S is called wandering relative to S if there exists a neighbor­
hood W oi P relative to 5 which, for some /o>0, and for />/o, has no 
image which intersects W. A maximal invariant subset S* of S whose 
points are non-wandering relative to S* is called central in S. Birkhoff 
shows by transfinite induction that every non-empty invariant sub­
set S of M possesses a central subset S*. Such a set 5* is closed rela­
tive to S and non-empty. If the system is conservative as defined 
earlier, the set which is central relative to M is M; but if M is non-
conservative, the central set M* of M is in general a proper subset 
of M. Let N be an arbitrary neighborhood of M* on M. The fraction 
of time which the finite arc PoPt spends in N tends to 1 as £ becomes 
infinite, independently of the choice of Po on M [26]. 

A closed invariant subset of M no proper subset of which is a 
closed invariant set is called minimal and any sub-motion (complete 
trajectory) of the set is called recurrent [18]. A periodic motion is a 
very special minimal set. For a motion Pt to be recurrent it is neces­
sary and sufficient that for every e>0 there exists a T > 0 so large 
that any arc PtPt+T of the motion has points within a distance e of 
every point of the motion. Limit points of a motion Pt as / becomes 
negatively or positively infinite respectively are called a- and œ-Umit 
points respectively. Birkhoff shows that the a- (or co-) limit motions 
of a given motion include a t least one minimal set. In general, mini­
mal sets do not reduce to a periodic motion. Recurrent motions on 
surfaces of negative curvature can be studied and classified with the 
aid of the topological symbolism of Hadamard,16 as Morse first showed 
in his thesis. 

In his desire to determine the ultimate significance of formal sta­
bility of Hamiltonian or variational forms, Birkhoff goes beyond the 
case of Hamiltonian or Pfaffian systems. In such general dynamical 
systems (A) is not true. Birkhoff defines even more general formal 
transformations and states that if these be admitted, any dynami­
cal system can be formally reduced near an equilibrium point of gen­
eral type to Hamiltonian form provided the conditions of first order 
and formal trigonometric stability are satisfied [25]. The meaning of 
this bold step is not altogether clear. 

Departing from the domain of formal operations, permanent stabil-
16 For a general theory see Marston Morse and Gustav A. Hedlund, Symbolic 

dynamics, I and II, Amer. J. Math. vol. 60 (1938) pp. 815-866; vol. 62 (1940) pp. 1-42. 
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ity is said to occur when sufficiently small initial displacements a t 
t=to from an initial solution cause displacements from the initial 
solutions which are arbitrarily small for all time. Formal conditions 
for permanent stability are not known. In particular it is not known 
whether or not a point of generalized equilibrium which is formally 
"completely" stable is in general permanently stable. The theory in 
the large is tied up with the theory in the small because the validity 
of the hypothesis of metric transitivity in a system would imply that 
permanently stable periodic orbits do not exist. 

A motion is termed transitive if it is everywhere dense in the phase 
space M. If such a motion exists the system is called topologicatty 
transitive. Birkhoff exhibits examples of such transitivity. The most 
general case of topological transitivity established up to this time in 
dynamical systems of classical type is that of geodesic motion on a 
surface of genus greater than 1 on which no point has a conjugate 
point.17 

Under metric transitivity, as first defined by Birkhoff and P. A. 
Smith [27], the only invariant subsets of M are sets whose measure 
is 0 or ni(M). Metric transitivity implies topological transitivity. The 
converse is probably true in analytic systems or systems with some 
degree of analytic regularity. A proof or disproof of this converse is 
much needed. 

Smith and Birkhoff [27] have defined central motions of iterates 
of a surface homeomorphism and characterized them in various ways. 
Metric transitivity is shown by them to be equivalent to the condi­
tion that no two "invariant integrals" on 5 be linearly independent. 
In the general analytic case at least two central motions are shown 
to exist. 

B. O. Koopman [30 ] discovered that a conservative flow T% on M 
with an invariant measure on M could be represented by a one-
parameter family of unitary transformations in Hubert space, thus 
opening up a new mode of investigation of dynamical systems. Fol­
lowing this, von Neumann established his "mean ergodic theorem" 
appropriate to Hubert space. Under the stimulus of these ideas, 
Birkhoff [29] saw that in treating transitivity open sets should be 
replaced by sets of positive measure. Birkhoff's first theorem is what 

17 Marston Morse and Gustav A. Hedlund, Manifolds without conjugate points. 
Trans. Amer. Math. Soc. vol. 51 (1942) pp. 362-386. For other aspects of the problem, 
see J. C. Oxtoby and S. M. Ulam, Measure preserving homeomorphisms and metrical 
transitivity, Ann. of Math. vol. 42 (1941) pp. 874-920, and P. R. Halmos, In general 
a measure preserving transformation is mixing, ibid. vol. 45 (1944) pp. 786-792. 
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is commonly known as his ergodic theorem. We shall give a formulation 
due to Khintchine.18 

The space M is assumed to have a finite measure m invariant under 
the flow. Let f be integrable over M and let P be a point of M. Then 

t±n\ v &{Pt)dt 
(4.7) lim 

y-*» T 

exists for almost all P on M. 
Extensions and applications of the ergodic theory have been made 

by Wiener, Wintner, E. Hopf, Garrett Birkhoff and others. If ƒ is 
the characteristic function of an arbitrary measurable subset V of M, 
the integral in (4.7) is the measure of the time spent by Pt in F for 
O^t^sT, and, in case the system is metrically transitive, Birkhoff 
shows that the limit in (4.7) equals the ratio of m(V) to m(M) for 
almost all P on M. 

(c) Periodic orbits. In the case of a Hamiltonian or Pfaffian system 
with two degrees of freedom and with a periodic orbit X (period 2w) 
one can use an integral to reduce the dimension of the phase space 
containing X to n = 3. Let *5 be an element of a regular analytic "sur­
face of section" which cuts across X at some point Q. If P is a point 
of S sufficiently near Q the orbit Pt will cut S again later at a point 
T(P). Poincaré introduced these transformations T of S into itself 
in order to establish the existence of periodic orbits in the neighbor­
hood of X. I t is clear that a necessary and sufficient condition that P 
represent an orbit with a period near 2w is that 

P = T(P). 

One can similarly use the &th iterate Tk(P) of the transformation 
T(P) to find orbits near X with periods near 2kw. 

The orbit X is termed simple if its equations of variation have no 
nonzero periodic solution. If X is simple it cannot be a member of 
an analytic family of periodic orbits, and, bearing in mind no doubt 
that this excludes systems classically called "integrable," Birkhoff 
terms the problem non-integrable if every periodic orbit and its multi­
ples are simple [26]. 

A generalized equilibrium point has been termed degenerate if the 
Hamiltonian function H can be formally reduced to quadratic terms. 
A system in which each periodic orbit is nondegenerate is termed non-
degenerate. Non-integrable nondegenerate systems exist as Birkhoff 
shows. Let (u, v) be regular coordinates on S neighboring a fixed 

18 A. Khintchine, Zu Birkhoff s L'ôsung des Ergodenprobletns, Math. Ann. vol, 107 
(1933) pp. 485-488. 
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point (0, 0) of T. If the system is non-integrable and nondegenerate 
the terms of first order in T reduce either to a rotation about (0, 0) 
through an angle incommensurable with 2ir (fixed point of elliptic 
type) or to the form 

u1 = pu, v' = — v ( p ^ O or 1) 
P 

where p is real (fixed point of hyperbolic type) [23]. 
Following Poincaré, Birkhoff makes use of the existence of an in­

variant integral in the original phase space to obtain an invariant in­
tegral [23, 33] 

Q(u, v)dudv (Q > 0) 

on S neighboring the origin, where Q is real and analytic in (u, v). 
Birkhoff shows that there exists a real power series F(u, v) which 
may be convergent or divergent, and is formally invariant under T. 
The series F starts with terms of the second degree or higher. The 
series Q and F are formally related by differential equations 

du dv 
Q— = FUf Q~ = -Fv 

dk dk 

whose formal solutions u and v starting with terms of the first order 
yield Th when k is replaced by an integer. 

Formal series transformations of u and v reduce T to a transforma­
tion 

(4.8) ux + m = (u + iv)eHr)i (h(r) = a + cr2m) 

when X is simple and nondegenerate and the fixed point (0, 0) elliptic. 
Here a and c are real constants with CT*Q and a incommensurable 
with 2 T . The exponent mis a positive integer in general 1. Whenever 
(4.8) holds, T is actually as well as formally very close to a rotation 
through an angle a, for sufficiently small positive r. For a simple 
nondegenerate orbit and a hyperbolic fixed point, T has the normal 
form 

Ui = puec^uv)m, vx = — ve-^uv)m (m > 0; c ^ 0) 
P 

where p is real and neither 0 nor 1. The use of these forms to obtain 
approximate representations of T is reminiscent of Birkhoff's use of 
asymptotic representations in his thesis, in the Riemann problem and 
in the formal Hamiltonian theory. 

ƒƒ 
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In [33] Birkhoff largely removes the condition that the orbit be 
"simple" although this task is one of great formal complexity. When 
the periodic orbit is "multiple" the terms of first order in the repre­
sentation of T have equal characteristic roots. In such special cases 
the corresponding fixed point Q of T is termed hyperbolic if there 
exists a real invariant curve passing through Q. Otherwise Q is termed 
elliptic. 

To establish the existence of periodic orbits in the restricted prob­
lem of three bodies Poincaré introduced his celebrated "last geometric 
theorem" but was unable to prove it.19 This theorem may be stated 
as follows: 

Given a ring 0 <aSrSb in the r, 0, plane and a 1-1 continuous area-
preserving transformation T of the ring under which points on r = a ad­
vance, and those onr = b regress, there will exist at least two points of the 
ring invariant under T. 

A number of mathematicians had attempted to prove this theorem 
and at least one erroneous proof was published. Urged on by his col­
leagues, Birkhoff [19] gave a beautiful proof of the theorem that 
went directly to the heart of the problem. Modified forms of the 
theorem were also presented by Birkhoff [24]. 

Using theorems of a nature similar to that of Poincaré, Birkhoff 
proves the following in [26]: 

(a) In non-integrablet nondegenerate Hamiltonian systems with two 
degrees of freedom any neighborhood of a periodic orbit of elliptic type 
includes infinitely many periodic orbits both of the elliptic and hyper-
bolic types. At most a finite set of these orbits have periods less than a 
given constant. 

A generalization of the Poincaré theorem to higher dimensions is 
given in Birkhoff [28]. This generalization employs the theorem of 
Morse that the number of critical points, suitably counted, of an 
analytic function defined on the product of w-circles is 2W. With D. C. 
Lewis, Birkhoff's theorem is applied in [3l] to establish the existence 
of periodic orbits neighboring a periodic orbit of general, formally 
stable type. 

A periodic orbit X of hyperbolic type cannot be permanently stable. 
When X in a is hyperbolic there exist [23 ] two analytic curves on S 
passing through (0, 0) and invariant under T(P). These invariant 
curves on S imply the existence of analytic families of motions asymp­
totic to X in either sense. 

No example is known in which the elliptic orbit X of (a) is "perma-

19 H. Poincaré, Rend. Circ. Mat. Palermo vol. 33 (1912) pp. 375-407. 
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nently stable" in the geometric sense and none such could exist if the 
system is metrically transitive. Nevertheless Birkhoff gives a rela­
tively complete description of motions neighboring X in case X is in 
fact permanently stable. Since this description is similar to the one 
given by Poincaré, it is omitted. 

A priori existence theorems for periodic orbits are very necessary. 
Birkhoff turns to the "direct" method in the calculus of variations, 
and uses the Jacobi "action integral" J . In Lagrangian problems 
in which the constraints are independent of the time this integral 
will in general be regular and positive definite in the sense of classi­
cal variational theory. A periodic minimizing extremal will then 
exist in an "extremal convex" region. No periodic minimizing ex­
tremal exists in very general problems, as for example in the restricted 
problem of three bodies with a parameter fx sufficiently small. To fill 
in this gap in the theory Birkhoff applied a "minimax principle" [21 ]. 

In BirkhofFs applications this principle reduces to an existence 
theorem for critical points of an analytic function F(x) of n-variables. 
If one supposes for the sake of definiteness that F is defined over a 
regular, compact, analytic manifold, then, suitably counted, there 
exist a t least Ri+Mo — 1 generalized saddle points, where Ri is the 
linear connectivity of the manifold and Mo the number of points 
(supposed isolated) of relative minimum of F. In similar or related 
forms this principle was known and applied by Poincaré, Maxwell, 
and Kronecker, and has an origin even more remote in the past. 
BirkhofFs bold step was to conceive of its application to functions of 
curves such as the integral / . He applied it in the billard ball problem 
[26] (motion on a convex table) and to obtain closed geodesies on a 
convex surface. On slipping an elastic band over the surface from one 
egg-shaped end to the other the process that requires the least stretch­
ing leads to a closed geodesic of minimax type. However, BirkhofFs 
conjecture that the closed geodesic analogously obtained for a topo­
logical w-sphere is of "minimax type," as characterized by him, is 
not true if n>2. 

The a priori existence of periodic orbits is necessary for the dynami­
cal theory as conceived by Poincaré and Birkhoff. 

(d) General qualitative dynamical theory. This theory is limited al­
most wholly to the case of two degrees of freedom m = 2 largely 
because a fundamental tool with Birkhoff as with Poincaré is a "regu­
lar surface of section." One presupposes a three-dimensional, analytic, 
compact, nonsingular phase space. A regular surface of section S is 
then an analytic surface crossed in the same sense by all trajectories 
without being tangent to 5 except along the boundaries. These bound-
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aries are to be finite in number and consist of closed trajectories. 
Further every trajectory except the boundary orbits shall cut S a t 
least once in any sufficiently large fixed interval of time. 

I t seems likely that such surfaces of section exist in general when 
m = 2. As Poincaré indicated, such a surface exists in the restricted 
problem of three bodies when the mass ju (that is, earth) is sufficiently 
small. Although open hyper-surfaces of section exist when m>2 it 
has not yet been found possible to make profitable use of them. 

As in (c) the "flow" in the phase space defines and is characterized 
by a conservative transformation T of 5 into itself. Birkhoff makes 
three tentative hypotheses none of which has been proved to hold in 
general, but each of which probably does so hold. These hypotheses 
as given in [33 ] are : 

(A.l) The dynamical system is transitive. 
(A.2) A regular surface of section S exists. 
(A.3) There is a t least one point which is fixed under T, but any 

such point, if elliptic, corresponds to a nondegenerate, periodic orbit. 
This qualitative theory culminates in the paper [33] 130 pages 

long, crowned by the Pontifical Academy. This paper resumes and 
extends much of BirkhofFs earlier dynamical theories. Upon finishing 
this work Birkhoff commented to the author that it was an exhausting 
task. In this connection it is of historical interest to recall that Birk­
hoff stated about 1925 that he considered his Transactions paper [21 ] 
for which he received the Bôcher prize as good a piece of research 
as he would be likely to do. In the wri ters opinion, the Rendiconti 
memoir [20 ], also a prize paper, should be placed near the top of 
BirkhofFs works, not because it is final but because one finds Birkhoff 
there first meeting the problems which he inherited from Poincaré, 
and taking the first clear cut concrete steps which he later generalized. 

The Pontifical memoir can only be broadly summarized. After ex­
tensive formal studies already reported on, Birkhoff shows that under 
hypotheses (A) there exists an infinite number of hyperbolic points 
fixed relative to some of the iterates Tk of T. There may exist no 
elliptic points, but if one exists, there exist infinitely many such ellip­
tic points. The general existence of the hyperbolic fixed points makes 
them a suitable instrument on which to base a qualitative character­
ization of T and this Birkhoff proceeds to do. 

On S the invariant curves C through a hyperbolic fixed point P 
are divided into a-branches Ea(P) and co-branches EU(P) according 
as the iteration of T"*1 or T makes a point on C tend toward P onC 
as a limit. In the original phase space each point on an a-branch 
(co-branch) defines a motion which becomes negatively (positively) 
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asymptotic to the periodic orbit determined by P . Returning to S, 
Birkhoff shows that under hypotheses (A) these a- and co-branches 
associated with a single hyperbolic fixed point P , if continued ana­
lytically, are everywhere dense on S. There is an exception which does 
not occur for most fixed points P when one of these branches belongs 
to a second hyperbolic fixed point. These a- and co-branches intersect 
in infinitely many points termed "homoclinic" by Poincaré. Homo-
clinic points are proved to be cluster points of fixed points. 

In the case of a metrically transitive system the set of all fixed 
points and of all ce- or co-branches attached to hyperbolic fixed points 
has a measure zero on the surface of section. The remaining points 
are grouped into sets S Q termed isomorphic by Birkhoff. Let Q be a 
point which belongs to no set Ea(P) or Eœ(P). The maximal con­
nected set of points which contains Q but no point of a set Ea(P) 
or JECO(JP) is independent of P among hyperbolic fixed points P and is 
denoted by 2 Q . These sets are transformed into each other under T, 
hence the term isomorphic. I t is probable that 2 Q = () in general; this 
case is called regular, 

Birkhoff shows in what sense the intersections of an Ea{P) and an 
JEW(P) "characterize" the isomorphic sets 2 Q . He invents a 2-dimen-
sional symbol called the signature of the system which displays the 
topology of the intersections of Ea(P) and EW(P). For Birkhoff such 
a signature is the ultimate in the qualitative description of a dynamical 
system. 

These ce- and co-branches belonging to a hyperbolic point P are 
properly called asymptotic to P . Birkhoff also defines connected sets 
asymptotic to elliptic points. These are sets and not curves, a t least 
a priori. They were studied at length by Birkhoff before he recognized 
the importance of the ce- and co-branches belonging to hyperbolic 
points. He indicates the formal analogies between the sets asymptotic 
to elliptic points and the ce- and co-branches attached to hyperbolic 
points. 

(e) The restricted problem of three bodies. This famous problem was 
studied by Birkhoff in three principal papers [20, 32, 34], Much of 
the work in these papers is an application or exposition of general 
theories elsewhere reported. There remain several special achieve­
ments to be noted. 

The two finite bodies (that is, sun and earth) have masses 1— fi 
and ix respectively, and the third body (x, y) has a mass which is 
infinitesimal. The two principal bodies are originally supposed to ro­
tate about their common center of gravity in the clockwise sense. 
In the representation of the problem in the (x, y)-plane the coordi-
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nates have been so transformed that the earth and sun rest fixed at 
points on the x-axis with their center of gravity at the origin. The 
problem then has the Jacobi integral 

where fl is a positive function of special nature. 
When C is sufficiently large the point (x, y) is confined in "Case I" 

to an oval about one of the finite masses. The phase space is then 
shown by Birkhoff to be the homeomorph of the three-dimensional 
projective plane. Topological models afe given for the phase space 
for other values of C. Birkhoff keeps to Case I in general. 

Direct periodic orbits had been established by Poincaré only for 
sufficiently small values of ju. Birkhoff shows that in Case I at least 
one retrograde periodic orbit symmetric with respect to the x-axis 
always exists. He replaces the ring transformation of Poincaré which 
led to the "last geometric theorem" by a transformation of a diskoid 
into itself. As long as this construction is possible there exists a direct 
periodic orbit. But such a construction is definitely established only 
for sufficiently small values of JJL. However the existence of the diskoid 
seems to demand less by way of proof than the existence of the 
Poincaré ring. 

Returning to the ring transformation of Poincaré, Birkhoff con­
cerns himself with the existence of orbits which are symmetric with 
respect to the #-axis. He shows that the transformation of the ring 
surface of section S into itself is the product of two involutory trans­
formations. He attaches two characteristic integers to a symmetric 
periodic orbit as follows. Suppose that this orbit cuts S a t a point P . 
If T represents the ring transformation of Poincaré there is a least 
integer k such that the Tk(P) = P . The jfe-iterates of P on S will rotate 
about the Poincaré ring / times. The pair (&, /) characterize the orbit. 
Birkhoff shows that there are infinitely many pairs (k, I) which repre­
sent symmetric periodic orbits and he exploits this symbolism to the 
full. 

After reading the preceding report on Birkhoff's advances in dy­
namics the reader may find it of interest to compare a summary [22] 
in 1920 and a prospectus [35] in 1941 by Birkhoff himself. The sum­
mary occurs under the title Recent advances in dynamics and the 
prospectus is entitled Some unsolved problems of theoretical dynamics 
and was presented at a fiftieth anniversary symposium at the Uni­
versity of Chicago in 1941. After a lapse of twenty-one years the prob­
lems remain essentially the same, but the approach and particularly 
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the language of approach has become more topological and abstract. 
"Conservative flows" are to be studied both in the topological and 
the statistical sense, and abstract variational theory is to enter. There 
is no doubt about the challenge of the field, and the need for a power­
ful and varied attack. 

V. PHYSICAL THEORIES20 

The earliest evidence of Birkhoff's interest in relativity can be 
found in a review of Books on relativity [36], in 1922. In a few words, 
while commenting upon the development of Einstein's general theory, 
he formulates what has turned out to be his own ideal in the creation 
of physical theories: "In the first place, it illustrates afresh the im­
portance of taking the simplest possible case as an abstract basis of 
departure. Secondly, Einstein uses mathematical analogy in passing, 
step by step, from the simple universe of the special theory to the 
most general universe, and at each step the mere sense of mathemati­
cal form is sufficient to point the way to a natural generalization. 
The mathematician may feel satisfied that the formal analogies sup­
plied by classical dynamics and four-dimensional geometry furnish 
the very basis by which Einstein's generalization proceeds" (page 
217). 

In 1923, in his widely acclaimed monograph, Relativity and modern 
physics (written with the cooperation of R. E. Langer), Birkhoff car­
ries out this ideal as closely as he can by establishing the electromag­
netic equations, and the fundamentals of the special and general the­
ories of relativity, showing how this can be done without indiscriminate 
appeal to physical intuition, and with a maximum of regard for geo­
metrical symmetry, mathematical rigor and simplicity. 

Feeling that "without a true model as a starting point, it does not 
seem likely that a final conception of the physical universe can be 
arrived a t" [37, p. 70], Birkhoff selects a "perfect fluid," which satis­
fies the classical equations of hydrodynamics, slightly modified and 
unified so as to be invariant under the Lorentz transformations. The 
pressure-density relation was such that all disturbances would be 
propagated with the speed of light. This fundamental property of the 
substance of which all matter is composed was intended to eliminate 
those paradoxes in the theory of collision which Birkhoff pointed out 
in his presidential address of 1926 [40 ]. 

In this address, Birkhoff urged theoretical physicists to at tempt to 
20 This account of Birkhoff's physical theories has been written by Morse's assist­

ant Dr. Richard Arens, who had the advantage of numerous conversations on this 
subject with Birkhoff in the last years. 
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account for atomic phenomena using mainly the ideas of special rela­
tivity and abstract dynamics, for he felt that the recurrence proper­
ties of dynamical systems could eventually provide an intuitive ex­
planation of quantum effects (cf. also [42, p. 317]). He made a modest 
a t tempt in this direction himself [39, 40 ]. He welcomed the return 
to the use of differential equations, due to Schrödinger, and justified 
these equations, from a general point of view, in [41 ]. 

Although it soon appeared that the "perfect fluid" could not be 
limited to a desirable behavior by its hydrodynamical equations alone 
[42, p. 324], Birkhoff retains it as raw material for "mathematical 
model-making," perhaps because he feels that any physical theory 
should contain some statement about the constitutive equations of 
"matter" [44, p. 301]. The best cross section of Birkhoff's ideas after 
ten years of contemplation can be obtained from his Franklin Insti­
tute Lecture of 1938, Electricity as a fluid [43], in which he states his 
ideas, opinions, and preferences with unusual directness, clarity and 
humor. 

The final phase, which was undoubtedly intended to be only the 
beginning, of Birkhoff's work in relativity was his gravitational theory 
[43] of 1943. With such a degree of analogy to electrodynamics as 
the essence of things permits, this theory involves a gravitational 
tensor potential governed by a linear differential equation which is, 
as seems proper in view of the underlying flat but Minkowskian 
space-time, of hyperbolic type. Whereas in electrodynamics the ac­
celeration of a charged particle is a linear function of the velocity with 
coefficients characterizing the field, here the acceleration depends 
quadratically on the velocity. The theory is completely linear, and 
homogeneous except for the presence of the "perfect fluid." 

As regards experimental verification, Birkhoff's theory predicts the 
same rate of rotation of the apse line of planetary orbits as does the 
general theory of relativity. Recently, moreover, a practical method 
of successive approximation for treating the two body problem has 
been worked out.21 

In Birkhoff's theory, phenomena such as the bending of light 
around the sun cannot be regarded as of electromagnetic nature, 
since there is no interaction of electromagnetic and gravitational 
field; but Birkhoff finds that by considering the world lines of 
"photons" as limits of world lines of particles on which the speed ap­
proaches that of light, the proper magnitudes for the bending of light 
and red-shift effect can be obtained [44a]. He has also discovered 

21 C. Graef Fernandez, El movimiento de los dos cuerpos en la teoria de la gravitation 
de Birkhoff, Boletin de la Sociedad Matemâtica Mexicana vol. 1 (1944) p. 25. 
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another approach to the red-shift effect which makes use of the wave­
length-energy relation of Planck. These ideas merit careful investiga­
tion, even apart from the remaining theory. 

I t has been stated22 that this theory does not provide for the iden­
tity of gravitational and inertial mass in as effortless a manner as 
the theory of Einstein, and this seems to be a defect from which 
linear theories must suffer.23 

Birkhoff inherited from Poincaré the sentiment that no single math­
ematical theory of any phenomenon deserves the exclusive attention 
of physicists, or at least of mathematicians. 

VI. MISCELLANEOUS WORKS 

(a) Fixed points in f unction space. The paper [45] written jointly 
with O. D. Kellogg is undoubtedly one of Birkhoff's most important 
contributions. The first theorems are generalizations of the Brouwer 
theorem that a continuous transformation of an w-disc into itself has 
a t least one fixed point. This is applied to a transformation of a space 
of uniformly bounded and equicontinuous functions f(s) and of the 
space of f unctions ƒ (s) which are summable square and represen table 
by a subset of points in Hubert space for which 2#» 2 converges uni­
formly. Fixed elements f(s) are inferred. 

A second point of departure is the theorem that a continuous trans­
formation of a real projective space of even dimensions into itself 
has a t least one fixed point or "invariant direction." This theorem 
extends to integral equations. 

Deformations of transformations are extensively used. A continu­
ous transformation 7 \ on an w-sphere Hn into the embedding (n+1)-
space is given as depending linearly on a parameter X in such a 
manner that as X varies to 0, T\ deforms into the identity without 
intersecting the origin. I t is concluded that to each point (b) on Hn 

corresponds a point (a) ("inverse direction") on Hn whose image 
under T\ is on the same ray as (b). This theorem has applications in 
the Fredholm theory. 

I t is of interest that the paper in the Transactions preceding [45] 
was an elegant treatment by Alexander of "transformations with in­
variant points," including many of the theorems in [45] concerning 
transformations of finite-dimensional spaces but not including appli­
cations to function spaces. The work of Birkhoff and Kellogg was the 

22 H. Weyl, Comparison of a degenerate form of Einstein*s with Birkhoff's theory of 
gravitation, Proc. Nat. Acad. Sci. U.S.A. vol. 30 (1944) pp. 205-210, especially p. 205. 

23 Loc. cit. p. 206. 



386 MARSTON MORSE [May 

acknowledged stimulus of the noteworthy extensions of Schauder, 
and later of Schauder and Leray, including important applications to 
partial differential equations. The invariance of the Brouwer degree 
of a transformation under continuous deformations is a unifying ele­
ment in the Schauder-Leray theory. 

I t is of interest to recall that Birkhoff's introduction to fixed point 
theory was by way of the lemma of Poincaré that the sum of the 
signed indices of an analytic vector field on an orientable surface of 
genus p is 2~-2p. Birkhoff used this theorem in his theory of elliptic 
and hyperbolic fixed points of the surface transformations arising in 
dynamics [21 ]. 

(b) The 4-color problem.2* Birkhoff's interest in this problem was 
aroused in Veblen's seminar in "analysis situs" during his years a t 
Princeton. Birkhoff brought out two papers [46, 47] on this subject 
during his stay a t Princeton. 

In [47] Birkhoff revived the qualitative approach based on Kempe 
chains. He found certain "reducible configurations," that is, figures 
whose presence in a regular map reduces the coloration problem to 
that of a simpler map. Of these the most important and the hardest 
to analyze was a ring of two regions not surrounding a regular penta­
gon. Of such reducible configurations later found by Franklin, Errera, 
and Winn, many are direct extensions of those of Birkhoff and most 
require for their proof Birkhoff's theorem on rings of five regions. The 
minimum number of regions in a map not capable of coloration in 
four colors was shown successively to be a t least 25 (1922, Franklin), 
27 (1927, Reynolds), 31 (1938, Franklin), and finally 35 (1940, Winn). 

In [46] Birkhoff introduced the quantitative approach. "Chromatic 
polynomials" P(x) equal to the number of ways a given map can be 
colored in x colors were found. Although the main objective of show­
ing that P ( 4 ) > 0 was not achieved, many properties of P(x) were 
obtained by Birkhoff [46, 48] and later by Whitney whose thesis 
was on this problem. Birkhoff hoped that the theory of chromatic 
polynomials could be so developed that methods of analytic function 
theory could be applied. Birkhoff took the first real step in this direc­
tion in [49]. 

The quantitative approach was not as successful in the study of the 
classical problem as the qualitative. Nevertheless Birkhoff felt that 
it might be easier to establish a stronger result concerning P(x) than 
a direct and weaker theorem of qualitative type. In a long joint paper 
with D. C. Lewis, submitted to the Transactions, a fusing of the quali-

24 The writer is indebted to Philip Franklin and to D. C. Lewis for summaries of 
work on the 4-color problem. 
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tative and quantitative approaches is sought by way of a study of 
P(x), borrowing and modifying the method of Kempe chains. In this 
study the reducibility of certain configurations previously established 
by Kempe chains is established by quantitative methods. Deeper in­
sight is thus gained. 

This paper includes a conjecture to which Birkhoff attached the 
maximum importance. The map of the sphere under consideration 
consists of n+3 simply-connected regions containing only triple ver­
tices, that is, points on the boundaries of just three regions. Let 
Pn+z(x) be the number of ways of coloring this map in x colors. I t is 
known that this polynomial is of degree n+3 and vanishes when x = 0, 
1 and 2. Hence 

Pn+M 
Q(x) = 

*(y - i)(y - 2) 
is a polynomial of degree n in x. The conjecture is that 

(x - 3)w è Q(x) £ (* - 2)» 

for x*z4: and n>0. The conjecture is readily established for x^5. I t 
is also established for n<9 even when # = 4 . I t has been verified for 
special maps of 12, 14, IS, 16, and 17 regions with x=4. 

This paper also contains an asymptotic formula for Pn(%) conjec­
tured by Birkhoff as a result of heuristic probability considerations. 

(c) General mean value and remainder theorems. The paper [50 ] of 
Birkhoff written in 1904 is somewhat complicated in form as is per­
haps necessary. There is given the value of f(x) and some of its 
derivatives up to the (» —l)st a t n points on an interval (a, b). 
Birkhoff introduces a polynomial F which together with its deriva­
tives equals ƒ and its derivatives at the respective points in question. 
The function ƒ(n_1) (x) is assumed continuous, and ƒ(n) is assumed to 
exist on (a, b). The general remainder theorem involves /and .Fand 
includes most known remainder theorems. I t has applications in the 
fields oî mechanical differentiation and quadratures. 

(d) Aesthetic measure. Birkhoff's interest in the analysis of art and 
music forms was of long standing. I t culminated in his famous treatise 
on aesthetic measure [51 ]. To oversimplify this work of Birkhoff 
would result in a misrepresentation. For this reason and because of 
the readability of [5l] no extended account of BirkhofFs work in this 
field will be presented. 

Within each class of aesthetic objects Birkhoff defines the order 0 
and complexity C so that their ratio 
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yields the "aesthetic measure" of any object of the class. Equal a t 
least in importance to the particular value of M attached to an aes­
thetic object is the fact that such an attempt at aesthetic analysis 
leads to distinctions and comparison of a more refined nature than 
those ordinarily made. His objects of study include polygonal forms, 
ornaments and tilings, vases, melody and harmony, and musical qual­
ity in poetry. BirkhofTs work is in the spirit of many a great artist and 
artisan of bygone days. The writer recalls the impression made upon 
him by finding Sheraton, the great creator of 18th century furniture, 
starting a treatise on design with descriptive geometry and ending 
with sideboards. 

In addition to this principal work Birkhoff wrote a number of 
papers on the subject, and spent a half year on leave of absence in 
the Far East and Europe to gather material. His study has been of 
interest to artists, musicians, psychologists, historians, and even 
mathematicians. The writer has found BirkhofTs theories on melody 
of practical value in the problem of effective improvisation on the 
organ. The high value which Birkhoff put on the aesthetic is illus­
trated by the answer he gave a professional musician as to why one 
should study mathematics. "One should study mathematics," said 
Birkhoff, "because it is only through mathematics that Nature can 
be conceived in harmonious form." 

(f) Basic geometry, Birkhoff and Ralph Beatley joined forces in the 
interest of the teaching of elementary geometry around 1929. In 1932 
Birkhoff [52] wrote a set of postulates for plane geometry based on 
the scale and protractor. These studies were capped by a textbook 
[53] on Basic geometry, written with Beatley and published in 1940. 
The necessity of undefined terms and assumptions is emphasized from 
the outset, doing away with "self-evident truths." There are five 
fundamental postulates, seven basic theorems and nineteen other the­
orems together with seven in loci. The system of real numbers is in­
corporated into three of the five axioms leading at once to the heart 
of geometry. Reports on the use of the book in practice are favorable. 
In any case the introduction of new ideas from the pen of a man as 
eminent as Birkhoff should be a great stimulus to the subject of ele­
mentary geometry. 

In summarizing the mathematical work of Birkhoff a sentence of 
Poincaré comes to mind. Of the periodic orbits in dynamical systems 
he says that they are "la seule brèche par où nous puissons essayer de 
pénétrer dans une place jusqu'ici réputé inabordable." Poincaré would 
be amazed to see the extent to which Birkhoff has widened this 
breech and opened many others. His zeal never flagged. 
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During the major part of his life Birkhoff was the acknowledged 
leader of American mathematics. His nomination as President of the 
International Congress of Mathematics that was to have been held 
at Cambridge, Massachusetts in 1940 was symbolic of this fact. 
Learned societies and universities the world over honored him. His 
work was crowned with four prizes. In the case of a man such as 
Birkhoff, a ranking at this time in the hierarchy of the great, in an­
ticipation of the verdict of history, seems of doubtful value. The au­
thor can find no words adequate to define him except that he was 
profoundly unique. Those who knew him best can add very simply 
that he was a kind and courageous friend for whom they will have a 
lasting affection. 
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