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If a connected metric space S is locally separable, then S is separa­
ble.1 If a connected, locally connected, metric space S is locally periph­
erally separable, then S is separable.2 Furthermore if a connected, 
locally connected, complete metric space S satisfies certain "flatness" 
conditions, it is known to be separable.3 These "flatness" conditions 
are rather strong and involve both im kleinen and im grossen proper­
ties, which makes application rather awkward in some cases. If, how­
ever, this space S contains no skew curve4 of type 1, then S has a 
certain amount of "flatness," but not quite enough to imply separa­
bility as can be seen from the following example. Let S consist of the 
points of the 2-sphere, distance being redefined as follows: (1) if the 
points X and Y of 5 lie on the same great circle through the poles, 
then d(X, Y) is the ordinary distance on the sphere but (2) if the 
points lie on different great circles through the poles, then d(X, Y) 
is the sum of the ordinary distances from each point to the same pole, 
using the pole which gives the smaller sum. The space 5 is a con­
nected, locally connected, complete metric space which contains no 
skew curve of type 1 but 5 is not separable. Furthermore, S contains 
no cut point. However, if this last condition is strengthened slightly, 
separability follows as is seen in the following theorem. 

THEOREM 1. Let S denote a locally connected, complete metric space 
such that no pair of points cuts S. If S contains no skew curve of type 1, 
then S is separable. 

PROOF. Suppose, on the contrary, that S is not separable. Let T0 
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1 Paul Alexandroff, Über die Metrization der im kleinen hompakten topologischen 
Ràume, Math. Ann. vol. 92 (1924) pp. 294-301. Also W. Sierpinski, Sur les espaces 
métriques localement separables, Fund. Math. vol. 21 (1933) pp. 107-113. 

2 F. B. Jones, A theorem concerning locally peripherally separable spaces, Bull. 
Amer. Math. Soc. vol. 41 (1935) pp. 437-439. 

3 F. B. Jones, Concerning certain topologically flat spaces, Trans. Amer. Math Soc. 
vol. 42 (1937) pp. 53-93, Theorem 31. Also F. B. Jones, Bull. Amer. Math. Soc. Ab­
stract 47-1-93. 

4 Kuratowski in his paper, Sur le problème des courbes gauches en Topologie, Fund. 
Math. vol. 15 (1930) pp. 271-283, denned two "skew curves/ One of type 1 is topolog­
ically equivalent to the sum of three simple triods each two of which intersect pre­
cisely at their end points. 
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denote a simple triod in S and let Mi = TV Let Ti denote a simple 
triod in S having only its end points in Mu and let M2*= TQ+TI. Let 
T2 denote a simple triod in 5 having only its end points in ikf2, and 
let Mz = T0+T1+T2. This process may be continued, so that if z is an 
ordinal less than fl*, then (a) Mg — TZTy 0^rj<zt (b) Mz is a separa­
ble (hence proper) subcontinuum of S, and (c) Tz is a simple triod hav­
ing only its end points in Mt. Hence 7i, T2} r3 , • • • , Tt, • • • is an 
uncountable sequence a of simple triods such that no two of them 
have a point in common which is not an end point of one of them. For 
each z< Qi, let dt denote the smallest of the distances: d(-4, arc BOC), 
d(Bt arc AOC), and d(C, arc AOB), where A, Bt and C are the end 
points and 0 is the emanation point of Tx. Let Hi denote the set of 
all simple triods T such that for some z} T is Tt of a and each end point 
of T lies together with a point of M\ in a connected domain of diame­
ter less than dg/5. 

Suppose that Hi is uncountable. There exists a positive number € 
such that for uncountably many different ordinals z < öi, Tg belongs 
to Hi and lAe>dz/5 > e. But since Mi is separable, there exist three 
distinct points Xi, X2, and Xz and three ordinals a < / ? < 7 < Q i such 
that (1) Tai Tp, and Ty each belong to Hh (2) for each £, £=<*, j3, 7, 
l . l €>d{ /5>€ , and (3) for each J, £ = a , j8, 7, and each *f i = l, 2, 3, 
there exists a connected domain D^ which contains Xi and an end 
point of !T{, and whose diameter is less than d$/5. Now for each £, 
£ = a , |3, 7, let 0$ denote the emanation point of TV From (2), (3), the 
definition of dt, and the triangle axiom on the distance function, it 
follows that the connected domains, D I = 2JD$I, D2

:=S^D^ and 
Dz = 2JD$3, are mutually exclusive and neither Du D2, nor Z}3 contains 
either 0«, O/j, or 0 7 . Because of the restricted way in which the triods 
may intersect, no point outside of Di+D2+Dz lies in more than one 
of the triods Ta, Tp, and Ty. But T V A may be joined to T V A by 
an arc in A ; T V A may be joined to T V A by an arc in A ; Ta-D2 

may be joined to TpD2 by an arc in A ; and so on; and in the sum of 
these arcs together with Ta+Tfi+Ty there exists a skew curve of 
type 1. So the assumption that Hi is uncountable leads to a contra­
diction. Hence Hi is countable. 

Let z2 denote the smallest ordinal such that if z*zz2l Tt of a does not 
belong to H%. Evidently z2 < fii. Let H2 denote the set of all triods T 
such that for some 2, T is T» of a and each end point of T lies together 
with a point of Mti in a connected domain of diameter less than dt/$. 
The collection H2 is countable. Let 23 denote the smallest ordinal such 
that if z^zz, Tt of a does not belong to H2. Evidently zz < %.. Let Hz 
denote the set of all triods T such that for some 2, T is Tn of a and 
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each end point of T lies together with a point of Mt% in a connected 
domain of diameter less than dt/5. The collection Hz is countable. 
Continue this process, so that for each natural number n, Hn is de­
fined and countable. There exists an ordinal number z < fii such that 
for each n, z>zn. Let z denote the first such ordinal. Clearly, T* of a 
does not belong to Hn for any n. Let D\, D2, and Dz denote three 
mutually exclusive connected domains covering respectively the 
end points of T* such that each has a diameter less than <f*. Since 
M1C.M2C.MsC. • • • CMtC • • • and ÜT* has its end points in Mif 

there exists an integer i such that each of the domains, Du D2, and Z)3, 
intersects MH. Hence Tg belongs to Hi. This is a contradiction. 

THEOREM 2. Let S denote a locally connected, complete metric space 
such that no pair of points cuts S. If S does not contain uncountably 
many skew curves of type 1, then S is separable. 

Theorem 2 may be established by the argument for Theorem 1, 
taking for To the closure of the set consisting of all points X such that 
X belongs to a skew curve of type 1 lying in S. The connectedness of 
Mz was not used in the argument. 

Comment. This result (Theorem 1) cannot be extended to complete 
Moore spaces.5 For a locally connected complete Moore space exists 
which is not cut by any pair of its points and which contains no skew 
curve of type 1 but which nevertheless is not separable.6 Furthermore, 
a separable such space exists which is not completely (perfectly) sepa­
rable and hence is not metric.7 The relation between Moore and metric 
spaces (in this connection) is shown in Theorem 3. 

THEOREM 3. Let M denote a locally connected, complete Moore space 
such that (1) no pair of points cuts M and (2) M contains no skew curve 
of type 1. In order thai M be metric it is necessary and sufficient that M 
be completely (perfectly) separable. 

PROOF. Since any metric, complete Moore space is a complete met­
ric space8 and any separable metric space is completely separable, the 
necessity of the condition follows at once from Theorem 1. Since a 

8 R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloqiuum 
Publications, vol 13, 1932. Hereinafter this book will be referred to as Foundations. 
A complete Moore space is a space satisfying Axioms 0 and 1 of Foundations. 

6 R. L. Moore, Concerning separability, Proc. Nat. Acad. Sci. U.S.A. vol. 28 (1942) 
pp. 56-58, Example 1. 

7 Ibid. Example 2. 
8 J. H. Roberts, A property related to completeness, Bull. Amer. Math. Soc. vol. 38 

(1932) pp. 835-838. 
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Moore space is a regular Hausdorff space, the sufficiency of the condi­
tion is well known.9 

THEOREM 4. Every metric space satisfying Axioms 0-4 of R. L. 
Moore's Foundations is completely (perpectly) separable. 

PROOF. Let 5 be a metric space satisfying Axioms 0-4 of Founda­
tions. No finite set of points separates S.10 Furthermore, with the help 
of Theorem 7 of Chapter III of Foundations it can be shown that S 
contains no skew curve of type 1. It follows from the preceding theo­
rem that S is completely separable. 
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9 P. Urysohn, Zum Metrisationsproblem, Math. Ann. vol. 94 (1925) pp. 309-315, 
and A. Tychonoff, Über einen Metrisationssatz von P. Urysohn, Math. Am. vol. 95 
(1926) pp. 139-142. See Foundations, p. 464. 

10 F. B. Jones, Certain consequences of the Jordan curve theorem, Amer. J. Math, 
vol. 63 (1941) pp. 531-544, Theorem 25. 


