
PRIME IDEALS AND INTEGRAL DEPENDENCE 
I. S. COHEN AND A. SEIDENBERG 

Let 9t and © be commutative rings such that © contains, and has 
the same identity element as, 9Î. If p and $ are prime ideals in SK and 
© respectively such that ^P\9t = p then we shall say that $ lies over, 
or contracts to, p. If over every prime ideal in dt there lies a prime 
ideal in ©, we shall say that the "lying-over" theorem holds for the 
pair of rings 9Î and ©. 

Suppose now that q and p are prime ideals in 91 such that qCp. 
If for every prime ideal O in © lying over q there exists a prime ideal 
$ in © lying over p and containing O, then the "going-up" theorem 
will be said to hold for 9t and ©. Similarly, if for every prime ideal 
$ in © lying over p there exists a prime ideal O in © lying over q 
and contained in ty, then the "going-down " theorem will be said to 
hold. 

Below we are concerned with the case where © is integrally depend­
ent on 9î. In this case we shall prove the "lying-over" and "going-up" 
theorems (§1). With certain additional conditions on 9Î and ©, also 
the "going-downw theorem is proved (§2). Counterexamples are given 
to show that none of these conditions can be omitted (§3). 

All of the results of this paper (except Theorem 7) have been proved 
by Krull1 when the rings are free from zero-divisors. The present 
proofs are essentially simpler than Krull's and at the same time do not 
require that the rings be integral domains. 

1. The "lying-over" and "going-up" theorems. Let 9Î and © be 
commutative rings with 9t contained in © and with a common iden­
tity element, and let © be integral over 9î. We examine first the ques­
tion of whether the "lying-over'' theorem holds for the rings 9t and @. 
We remark that if a maximal ideal in © necessarily contracts to a 
maximal ideal in 9t, and if 9t has a single maximal ideal p, then for the 
prime ideal p it is certainly true that there exists a prime ideal in © 
lying over p; in fact, every maximal ideal of © will lie over p. This 
remark is the motivation behind the following theorem. 

THEOREM 1. Let © be integral over 9Î, and let the prime ideal $ in © 
lie over the prime ideal p in 9Î, that is, ^5P\9t = p. Then p is maximal if 
and only if $ is maximal. 
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1 Zum Dimensionsbegriff der Idealtheorie, Math. Zeit. vol. 42 (1937) pp. 745-766. 
Especially relevant are Theorems 1-6 and the considerations on pp. 756-757. 
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PROOF. Consider the residue-class rings ©* = © / $ and 9î* = 9l/p. 
Since $n$R = p the ring @* may be considered to contain 9î*; 9Î* and 
©* are integral domains, and ©* remains integral over 9î*. Theorem 1 
then reduces to the following well known statement: 

If SR and © are integral domains and © is integral over $R then SR is 
afield if and only if © is afield. 

To prove this statement we note that if SR is a field it follows 
trivially that © is a field. Conversely, let © be a field and let a(9é0) be 
an element of SR. We wish to prove 1/aESR. Since l/a£E©, it is in­
tegral over 9t and hence we have an equation of integral dependence : 

( lA) n + ci(l/a)~-* +...+cn-0, a e » . 

Multiplying this equation by a**"""1 we obtain 

1/a •- - (a + c2a -\ + cna«~l) G SR. 

This proves that 9Î is a field, and completes the proof of Theorem 1. 

THEOREM 2. Let © be integral over 9$. Then for every prime ideal p 
in 9Î there exists a prime ideal $ in © lying over p. 

PROOF. If 9t contains only one maximal ideal, and this is p, then 
certainly the theorem holds for p; namely, as noted above, any maxi­
mal ideal of © (such ideals certainly exist2) lies over p. If 9Î and © 
are integral domains then the theorem can be reduced to this trivial 
case by the device of forming quotient rings. In fact, we form the 
quotient rings JR/ = SRV ( = the set of elements in the quotient field of 
5R of the form a/b, a, i£SR, &(£p) and ©,3=©p (=the set of elements 
in the quotient field of © of the form a/b, <x£@, fcGîSR, bÇ£p). The ring 
©' is integral over SR'; moreover $R' has a single maximal ideal, namely 
p' = 9ï' • p, and p ' n » = p. If $ ; is a maximal ideal of ©', then by our 
initial remark, ty' lies over p'. We assert that $ = ̂ 3'/^© lies over p. 
In fact, ^nSR = ?J ,n©nSR = ̂ , njR = $'nSR ,nSR«p ,n$R = p. This 
completes the proof if 9Î and © are integral domains. 

If 9t and © are not integral domains we cannot form the required 
quotient rings. Nevertheless, the above argument can be adapted to 
commutative rings in general. Namely, consider the set W of ideals 
in © which contract to ideals contained in p; W is not empty, since 
it certainly contains the zero ideal. Let $ be a maximal element2 

of W. We assert that $ is prime and lies over p. 
2 We make use here of the following statement, which is an immediate consequence 

of Zorn's Lemma: Let Wbea nonvoid set of ideals in some ring; assume that if a subset 
W' of Whas the property that of any two of its ideals one contains the other, then the union 
of all the ideals of W' is a member of W. Then W has a maximal element. 
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For let a and j8 be elements of © not in $, c*j3£ $. Then ($, a) and 
{% j3) contain $ properly, so that {% a)r\dt^pt (% j8)n9î£p. 
Hence there exist elements a and 6 in 9t but not in p such that 
a -o-a(^), b S T J S ^ ) , <r, r £ © . Then a& sörrai8(^), a & G ^ n ^ C p; this 
is a contradiction, and thus $ is prime. If ^HSÎCp properly, let 
<*€*), <£€$• Then ($, <0D^ properly, whence ($, d)H3î$p, so that 
there exists an element ££9î, cÇfcty, such that c srf(!P), <r£©. Since © 
is integral over 9Î, cr satisfies an equation 

<rn + oio-*»-1 H + an « 0, a< £ JR. 

From this follows 

(<rd)n + daiiad)»"1 + * • • + dn0n « 0. 

Since £S(rd($), we have 

cn + datf»-1 H + dnan s 0 ($). 

Since the left side is in JR, this congruence holds mod p, and since d£p , 
we have c n£p, c£p, a contradiction. This completes the proof. 

THEOREM 3. i ^ © be integral over 9t. £e£ $ be a prime ideal in 9Î 
containing the ideal a. !ƒ 21 is an ideal in © such that §tn9t = a /Aew 
there exists a prime ideal in © containing 3Ï awrf lying over p. 

PROOF. This theorem follows directly from Theorem 2 if we take 
the residue class rings ©/H and 9t/a. 

Conversely, Theorem 2 follows from Theorem 3 by placing 2Ï = (0). 
Theorem 3 can, in fact, be proved directly along the same lines as 
Theorem 2. Thus the two theorems are equivalent; but in Theorem 2 
the content takes the form of the "lying-over" theorem, in Theorem 3 
it takes the form of the "going-up" theorem. 

Theorem 1 implies that if two distinct prime ideals of © lie over 
the same maximal ideal of % then neither of these two prime ideals 
can contain the other. This side of the theorem can be strengthened 
through the following. 

THEOREM 4. Let © be integral over 9Î, and let the prime ideal $ in © 
lie over p in 8Î. Then no ideal in © properly containing ty can contract 
to p in 9ft. 

PROOF. If we take the residue-class rings © / $ and 9î/p, the theo­
rem reduces to the following: 

If the integral domain © is integral over the ring 9ft then any nonzero 
ideal of © contracts to a nonzero ideal of 9Î. 
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Suppose, then, that «G®, a?*0; if 

a* + eta*"1 + . . . + < ? * - ( ) , a G % 

is an equation of integral dependence of least possible degree for a 
then cn 5̂  0. For cn = 0 would yield 

a**1 + dot»"* H + c*-i - 0, 

that is, an equation of integral dependence for a of degree less than n. 
Since cnG(a)r\9î, (a)H9î^(0). This completes the proof. 

2. The "going-down" theorem. Unlike the "going-up" theorem, the 
"going-down* theorem requires assumptions on the 0-divisors of 9t 
and @. Even in the case of integral domains, however, the "going-
down " theorem will not hold without further assumption on 9?: the 
assumption made below is that 9Î is integrally closed in its quotient 
field. 

THEOREM 5. Let 9Î be an integral domain integrally closed in its 
quotient fieldf © a ring integral over 9Î, with none of its zero-divisors in 91. 
Then the "going-down" theorem holds f or 9t and ©; that is, if q and p 
are prime ideals in 9Î with qCp, then f or every prime ideal *$ in © 
lying over p there exists a prime ideal Q, contained in $, and lying over q. 

Before proving this theorem we prove two lemmas.3 

LEMMA 1. Let © be integral over Sft and let q be an ideal in $R. Then the 
set of elements in © satisfying an equation of the form 

(1) cLm + ciam~l + • • • + cm « 0, CiGq, 

is the radical of © • q. 

PROOF. If a satisfies the above equation then a w £ © - q, so that a 
is in the radical of © • q. Conversely if a is in the radical, then <xh£© • q 
for some k* Thus it is sufficient to prove that every element a in © • q 
satisfies an equation of the given form. For elements of the form <rq, 
where <rG©, qCHq* this is immediate. For let <r satisfy the equation 

<rm + di<rm~l H + dm = 0, diEM; 

then 

(<rq)m + dtfiaq)™-1 H h dmqm = 0. 

Since every element of © • q is the sum of a finite number of terms of 
the form <rq it remains to show that the sum of two elements of © 

8 These lemmas are somewhat stronger than is actually necessary for the theorem. 
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satisfying an equation of the form of (1) also satisfies such an equa­
tion. 

Let then 

jB» + dtf"-! + • • • + dn - 0, d< G q. 

It follows from these equations that every power ar, r*zm, can be 
written in the form 

ar « eiam-i -j- . . . -j- 6m eiç: qf 

and every power £*, s è # , in the form 

0. - ytf-i + . . . +/n, / , e q . 

Let the products a*/?', O ^ i g w —1, Og^^w —1, arranged in some 
order, be designated by r*, k = l, • • • , mn. Then every product arj3* 
with r+s^m+n — 1 can be written as a linear combination of the 
r's with coefficients in q. Hence if /=m+w —1 then 

(a + P)lu * X) ?<i*7, î<y G q, * - 1, • • • . m». 

From these equations we obtain 

rrdet ((<* + 0)ldiS - qi}) = 0, i * 1, • • • , #w. 

Since one of the rt- is 1, the determinant is zero, and this is an equation 
for a+/3 of the form of (1). 

LEMMA 2. Let 9t be integrally closed in its total quotient ring4 $. If 
f(x) and g(x) are monic polynomials in $t[x] and h(x) =s:f(x)g(x) is in 
$l[x] then f (x) and g(x) are in dt[x]. 

PROOF. Consider the residue-class ring $[#]/ƒ(#). Since f(x) is 
monic, this ring contains a ring isomorphic to $ and a root 6 of ƒ(#). 
In this way, it is possible to form an extension ring of $ in which 
f(x) and g(x) factor into linear factors, say 

/(*) - n (* - «<>. *(*) - n (* - w. 
Since &(<**) = 0 and A(j8,-) = 0, the au and /3,- are integral over 9Î. Hence 
also the elementary symmetric functions of the cti and /33-, which are 
the coefficients of ƒ(#) and g(#), are integral over 9Î. Since SR is in­
tegrally closed, these coefficients are in 9Î. 

4 The total quotient ring of 9Î consists of all quotients a/b, where a and b are in Sft 
and £ is not a zero-divisor. 
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PROOF OF THEOREM 5. Let 8 be the total quotient ring of @; since 
no element of 9t is a 0-divisor in 8, 8 contains the quotient field $ of 91. 

Let D be the multiplicatively closed system in © consisting of ele­
ments of the form dS, where d£9t, d(£q, 8£©, bQt^. We consider 
the set W of ideals in © which contain © • q and do not meet D. We 
first show that Wis not empty; specifically it contains ©• q. For sup­
pose dô£©-q. By Lemma 1 there exists an equation &(#)~0 of in­
tegral dependence for dô all of whose coefficients except the leading 
one are in q. Let f(x) = 0 be an equation of least degree which is satis­
fied by dô over $. Since the leading coefficient off(x) is not a 0-divisor, 
we may assume that f(x) is monic. Then h(x) s=f(x)g(x)1 where 
#(#)£$[*] . By Lemma 2, the coefficients of f(x) and g(x) are in 9Î. 
Since all the coefficients of h(x) except the first are in q, it follows by 
the familiar argument of Gauss' lemma that the same is true for ƒ(#) 
and g(x). 

Let f(x)~xn+cixn-1+ • • • +cn. Clearly xn+(ci/d)xn"l+ • • • 
+ (cn/d

n)*=0 is the monic equation of least degree satisfied by ô 
over $. Just as above for ƒ(#), we have 6»=ct/d

iG9t. Since M*'=c»-£q 
and d ^ q we have &»£q. Hence 

§n « _ i l 4 — i j n e <g.q c $, 

whence ôG*îp, a contradiction. 
Let, now, O be maximal2 in W. We have OH9Î3©• qH9î:2q, but 

Q 0 9 Î cannot contain q properly since O does not meet D. Also 
Q C $ since O does not meet D. It remains to prove that O is prime. 
Suppose, then, that 7SGO but 7(£D and S(£Q. Since (Q, 7) and 
(O, ô) contain O properly, each of them must intersect D, whence 
also their product intersects D, since D is multiplicatively closed. 
This is a contradiction since this product is in O. This completes 
the proof. 

3. Counterexamples. In order better to see to what extent the hy­
potheses of Theorem 5 can be weakened, we formulate the three hy­
potheses as follows: 

(A) The ring 9t is integrally closed in its total quotient ring. 
(B) A non-zero divisor of 91 remains a non-zero divisor in ©. 
(C) 91 is an integral domain. 
We show by counterexamples that none of these assumptions can 

be dropped from Theorem 5. 
(A) Let f(x, y)=y2—x2—xz£.K[x, y], where K is a groundfield of 

characteristic 0. Since the curve ƒ(x, y)—0 has a singularity at the 
origin of the x^-plane, the ring K[%> rj]~K[x, y]/(f(x, y)) is not in­
tegrally closed in its quotient field ; in fact, r = rj/% satisfies the equa-



258 I. S. COHEN AND A. SEIDENBERG [April 

tion r2 — 1 — £ = 0, and hence is integral over K [£, rj ]. But rç/£ (£j£ [£, rj ], 
since r)/£ÇzK[%, rj] leads to yÇ~(xt y

2—x2-~xz)~(x, y2), which is im­
possible. Consider now the cylinder erected on the curve ƒ(x, y) = 0, 
and let SR = i£[£, rç, f]=iC[#, yt z]/(f(x, y)) be its ring of nonhomo-
geneous coordinates. On this cylinder consider an irreducible curve 
which passes through the point (0, 0, 1) and which lies on only one 
branch of the cylinder in the neighborhood of this point, say the curve 
whose prime ideal is q = G*£+rç, f2 — 1 — £). Let now ©=i£[£, r, f], 
where r=*rç/£. The surface tf2 — l— # = 0, whose general point is 
(£> 7-» ?)> is a Cremona transform of the original cylinder; this trans­
formation has the effect of separating the two branches of the cylin­
der. In this separation, the point (0, 0, 1) is split into two points, 
(0, —1, 1) and (0, 1, 1); that is, the prime ideals in © lying over the 
prime ideal p = (£, rj, f — l) are the prime ideals ?5i = (5, r + 1 , f — 1) 
and tyt — il;, r —1, f — 1). Now the curve given by q transforms into a 
curve passing through the point $1 (0, —1, 1) but not through the 
point $2 (0, 1, 1). In terms of ideals, one has the prime ideals q, p 
in 9t, with q O , and the prime ideal $2 in © which lies over p. But 
no prime ideal D in © lying over q could be contained in $2. For sup­
pose Q C $ 2 and D n 9 t = q. We have f£+i? = (f+r)£GO. Now 
£ + r G O, together with f — 1G $2 and r — 1G $2, would imply 1G $2, 
which is impossible; £ G O would imply rj G O and f2 — 1GO, hence 
f—lGQ, whence OHSK would contain p. Thus f + r ^ O and £ É £ Q . 
This is a contradiction, and completes the proof that the "going-
down " theorem fails for dt and ©. Geometrically, then, the reason for 
the failure lies in the fact that a non-integrally closed ring 9t allows 
a variety on which two branches meet and on which consequently 
there may be subvarieties which lie locally on only one branch.6 

(B) Let dt be the ring of integers and let © = 9t[*]/0>c2~a:, 2x), 
where x is an indeterminate. Since no integer is in (x2—x, 2#), © may 
be considered to contain SR, and if a is the residue of x, then © = 8Î [a], 
a 2 ~ a = 0, 2a=0. If q = (0), p = (2), $ = (2, a ~ l ) , then $ is maximal 
and lies over p. There is no O such that QP\ÎR = q , O C ? . For if there 
were, we would have 2a = 0GO, but 2(£Q, hence « G O C ^ î this is 
impossible since a— 1G$. 

(C) Let 31 = (x2, xyf xz, yz—y, z2—z) be an ideal in the polynomial 
ring K[x, yf z]. Since %C\K = (0), the ring ©=.£[#, y, s]/2l contains 
a field isomorphic to -K", which we identify with K, and if if, ?/, f are 
the maps of x, y, z in © then © = i£[£, rç, f] . Let 9t = i£[£, 77]; 9t is 
not an integral domain and © is integral over 9Î. In © we have the 

8 This remark was made to us orally by Professor Zariski. The geometrical reason­
ing permits us to construct a counterexample simpler than Krull's. 
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decomposition ©• (0) = ^ ' H Q where O is the prime ideal (£, f — 1), 
and tyf is the primary ideal (rç, f), of length 2, belonging to the prime 
ideal $ « (£, y, f ). In 9t we have the decomposition 8Î • (0) = p'H q, where 
q = Q n $ = (£), and p' = Ç'n{R»(rç) is a primary ideal, of length 2, 
belonging to p = $ n 9 î = (£, y). Since any prime ideal in © contains 
©•(0), it must contain one of the prime ideals $, O ; hence $ can 
contain no prime ideal properly. Since, however, ^ H S K ^ D q prop­
erly, the "going-down " theorem fails. 

We now show that hypotheses (A) and (B) are satisfied. An ele­
ment of © is a 0-divisor if and only if it is contained in at least one 
of the ideals $, O. If this 0-divisor is in % then it is in at least one of 
the ideals p, q; but then it is a 0-divisor of 9Î. Thus (B) holds. 

It remains to prove that 9? is integrally closed in its total quotient 
ring. Since £2 = i~rj = 0, every element of 9$ can be written in the form 
G+6£+£0?)?7, where a, b&K, c(rj)Ç,K[rj]; moreover, a is unique. The 
element a+b^+c(rj)rj is a 0-divisor if and only if a = 0, since then and 
only then would it be in one of the ideals p, q. Thus the total quotient 
ring of dt consists of the quotients whose denominators are of the 
form a+b%+c(rj)r}, a 7*0. If we multiply numerator and denominator 
by a — b£, we may suppose without loss of generality that è = 0. Sup­
pose now that a = [d(Yi)+e%]/f(fi), where e&K, d(y), f(y)G.K[y], 
/(0) =a 5**0, is integral over 9t. Since e£//(rç) = e£/a€ESR, we have that 
a — e!;/a~d(r])/f(r)) is integral over 9î = i£[£, rj]} hence also over 
K [rj ] since £2 == 0. Now K [77 ] is a simple transcendental extension of K, 
hence is integrally closed. Hence d(r))/f(rj)ÇzK[r)] and a£9t . This 
completes the proof. 

The geometry behind the above counterexample is as follows. The 
ideal © • (0) corresponds to the reducible variety (in the xyz-space) 
consisting of the line #=2 — 1=0 and the point # = ^ = £ = 0; the ideal 
9t-(0) corresponds to the line # = 0 in the acy-plane. Over the point 
(0, 0) lie the points (0, 0, 0) and (0, 0, 1). Since the point (0, 0, 0) 
is isolated for the variety corresponding to ©• (0), but the point (0, 0) 
is not isolated for the variety corresponding to 9Î- (0), it is clear that 
the "going-downn theorem must fail for 9Î and ©. Now any polyno­
mial ƒ (£, rj) for which ƒ (0, 0) =0 is a 0-divisor in ©, since the cylinder 
f(x, y) =0 contains part of the variety of ©• (0). If ƒ(£, rj) is to be a 
0-divisor also in 9Î, then the projection of the variety of © • (0) must 
not be, from an algebro-geometric point of view, simply the line # = 0, 
but should also have an imbedded point at (0, 0); that is, 9t- (0) 
should have the prime ideal corresponding to (0, 0) as an imbedded 
component. This is accomplished above by making the isolated com­
ponent of ©'(0) corresponding to (0, 0, 0) a proper primary ideal. 
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4. Some additional remarks. We saw above that if © is integral 
over 9t then the "lying-over" theorem holds for 9t and ©. An obvious 
necessary condition for the "lying-over" theorem to hold for a pair of 
rings Sft, © is that ©-pn9t = p for every prime ideal p in 91. This is 
known to be also a sufficient condition in the case that 9t and © are 
integral domains. We now show this to be true in general. 

THEOREM 6. Let 9Î and © be two rings, with 9ÎC©, o,nd let p be a 
prime ideal in 9Î. A necessary and sufficient condition that there exist a 
prime ideal $ in © lying over p is that © • pP\9t = p. 

PROOF. Suppose ©-pn9t = p. Let $ be a maximal element2 in the 
set of ideals in © which contract to p. That $ is prime follows just 
as in Theorem 2. 

THEOREM 7. Let the ring 9Î be contained in the field $, and let 0 £ $ , 
6 s* 0. If p is a prime ideal in 9t then in either 8Î [6 ] or 9t [0"1 ] there lies a 
prime ideal over p.6 

PROOF. Suppose that no prime ideal in 9t[ô] lies over p. Then 
p-9t[0]n9Op properly. Hence there exists an element &E9Î, &€£p 
such that b~po+pi6+ • • • +pmOm> £*6p. But then 0"*1 satisfies an 
equation with leading coefficient not in p. Hence 91'[0-1] is integral 
over 9t', where 9î' is the quotient ring of 9£ with respect to p, and 
there exists a prime ideal ty' in 9t' [0"""1] which lies over the prime ideal 
Sft'-p. Then Ç « Ç ' n « [ 0 - 1 ] lies over p. 

The following theorem is the basis on which Krull proves the "go­
ing-down" theorem in the case of integral domains. We give a some­
what more direct proof. 

THEOREM 8. Let 9t be integrally closed in its quotient field $, and let 
© be the integral closure of ^ in a finite normal extension 8 of $. Then 
any two prime ideals in © which lie over the same ideal in 9î are con­
jugate. 

PROOF. It is clear that © is invariant under every automorphism 
of 8 /$ ; two ideals of © are said to be conjugate if one is carried into 
the other by such an automorphism. Let $i be a prime ideal in © 
and let $i, • • • , $m be a complete set of distinct conjugates of $i. 
We show that if Ç is a prime ideal in © such that $ n $ = = $ i n $ , 
then ^ is one of the ideals $i, • • • , tym. For suppose ty ^ $»-, 
i = l, • • • , m. Then by Theorem 4, $<£$*•, i = l, • • • , m. Hence there 
exists an element aG^5, a^E^i, i = l, • • • , m. But then none of the 

6 This theorem was given by Professor Chevalley in a Princeton lecture. 
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conjugates of a is in $»-, i = 1, • • • , m\ hence neither is any power of 
their product. Some such power, however, is in 9Î, hence in ^ /^SlC^i . 
This is a contradiction and completes the proof. 

HARVARD UNIVERSITY AND 
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NOTE ON AN ASYMMETRIC DIOPHANTINE 
APPROXIMATION 

C. D. OLDS 

1. Introduction. In a recent paper B. Segre [ l]1 introduced a new 
type of Diophantine approximation which he called asymmetric, since 
the intervals of approximation are divided into two partial intervals 
which are in an arbitrarily given ratio. His main result is the follow­
ing theorem [l, p. 357]: 

THEOREM 1. Every irrational 6 has an infinity of rational approxima­
tions x/y such that 

—~ 1 X T 

(1) y»(l + 4r)^ < 7 ~ 6 K y*(l + 4-r)1/2 ( : y > 0 ) ' 

where r is any given non-negative real number. 

This theorem is classic for r = 0, cf. [2, p. 139], and for r = 1 it re­
duces to the fundamental result due to Hurwitz [2, p. 163]. No other 
particular cases of the theorem seem to be known. 

Segre's proof of (1) is geometrical. The purpose of this note is to 
show that when r ^ 1 it is possible to give a very simple arithmetical 
proof. The method is a generalization of that used by Khintchine [3 ] 
for the special case when r = 1. 

2. Proof of Theorem 1. We suppose that 0 is irrational and that 
0 < 6 < 1. For an arbitrary positive integer n form the Farey series2 

of order n, that is, the ascending series of irreducible fractions be­
tween 0 and 1 whose denominators do not exceed n. Let a/b and 
a'/b' be the two successive terms of this series which satisfy the in­
equalities a/b<0<a'/bf. We distinguish two cases. 

Received by the editors October 4, 1945. 
1 Numbers in brackets refer to the references. 
2 See Hardy and Wright [2, p . 23]. 


