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Let p(n) denote the number of unrestricted partitions of n. pk(n) 
denotes the number of partitions of n into precisely k summands, or 
what is the same into partitions whose largest summand is k. Auluck, 
Chowla and Gupta1 announced the following conjecture: 

For n fixed let pk0(n) be the greatest pk(n); that is, PkQ(n) ^pk(n). 
Then 

(1) ko ~ c-W2 log », c = TT(2/3)1/2. 

They prove that 

n112 < h < (1 + 5)<rV2 log n 

for every 8>0 if n is sufficiently large. 
In the present note we shall prove (1). In fact we shall prove that 

(2) h = tr1»1'2 log n + an1'2 + o(nlf2) where c/2 = e~eaf2. 

They also conjectured that for Jki<feâ£o, pk!(n)Spk2(n) and for 
ko<h<k2i pki(n)<pk2(n). They verify this conjecture for n^32. 
Recently Todd2 published a table of all the pkin) for n^lOO, and 
it is easy to verify the conjecture for w^glOO. I am unable to prove 
or disprove this conjecture. They also remark that pk0{n) differs from 
c-inm i0g n by i e s s than 1 for n^ 32; (2) shows that for large n the 
difference tends to infinity. 

Lehner and P proved that if we denote 

rSk 

then for k — c^n112 log n+\n1/2 we have the asymptotic formula 

(3) Pk(n)/p(n) - (1 + o(l)) exp ( - (2/c)e^2). 

In proving (2) we shall use (3) a great deal, we shall also use the 
well known asymptotic formula 

(4) p(n) = (1 + <?(!))(1/4-31'2») exp [en1'2). 
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Let f(n) tend to infinity arbitrarily slowly; we easily obtain from 
(3) that for fa- [c^n1'2 log n+f(n)n1'2], * , - [cH1** log n-f(n)n"2], 

(5) (l/#(»))(P*i(») - ^ W ) -> 1 as » -* oo. 

We immediately obtain from (4) and (5) that for some k2<kz<ki 

(6) pk9(n) > dpW/n1*2 > (c2/n^2) exp {en1'2). 

Ci, c2t • • • denote absolute constants. Thus 

(7) pk0(n) è pkM > (c2/n
z'2) exp (en1'2). 

Now we show that for sufficiently large Cz 

(8) ko < c-W2 log n + czn1'2. 

Let fe4èc""1n1/2 log w+c3n1/2 . I t clearly follows from the definition of 
pk(n) and P*(w) that pkA(n) = P*4(w-~£4) <p(n — ki). Thus from (4) 

£*4(*0 < fa/w) exp (c(n - *01/2) < (<*/») exp c(n^2 - h/2n1'2) 

< (a/n) exp ( s ^ 1 ' 2 - log »/2 - c3/2)) 

< (ci/n1'*) exp (cw1/2) < ^ ( n ) 

for sufficiently large cZf and this proves (8). 
Next we prove tha t for sufficiently large c$ 

(9) h > c-W* log n - w1'2. 

Suppose (9) does not hold. We obtain from (7) that for some 
ko^-W2 log n-cin1** 

(10) pkQ(n) > (<?«/»•'*) exp (en"2). 

We shall show that (10) leads to a contradiction. First we show that 

(11) pk{n) S pk+i(n+j) for ƒ è *". 

We have 

(12) pk(n) S Pk+i{n + i) S pk+i(n + j). 

The first inequality of (12) we obtain by mapping the partition 
01+• • * +koîpk(n)mtoai+ • • • +(k+i) which belongs topk+i(n+i), 
the second part we obtain by adding j—i l 's to every partition of 
ph+i(n+i); this proves (11). 

Put |V>2]=&; we have from (10) and (11) for O^i^b 

pk0+i(n + b) è pkoM > (c2/n*'2) exp (en1'2) 

> (cs/n*'2) exp (<?(» + i)1 '2) . 
Thus 
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(13) £ **+<(» + b)> (c/n) exp (c(n + b)W). 

Now we obtain from (5) that for every e and sufficiently large c6 

and n 

(14) £ pk(n + b) > ( 1 - e)p(n + b). 
k>ko+b 

The proof of (14) follows immediately from the fact that ko+b 
<c~xn112 log n — {ci~-1)»1/2, thus (5) can be applied. From (13) and 
(14) we have 

b 

p(n + J) > E **+*(» + b) + £ pk(n + b) 
*—0 Jc>ko+b 

> ( 1 - e)p(n + b) + (*/*) exp (*(» + b)*'2). 
Thus 

€*(* + b) > (ct/n) exp (<?(» + J)1 '2), 

which contradicts (4); this proves (9). 
We now know from (8) and (9) that ko has to satisfy 

e-W'2 log n - chn
1'2 < k0 < r"1»1 '1 log n + <w1/a. 

Put 
ko == ^~^1/2 log n + #n1/2. 

We obtain from (3) and (4) that 

(15) * * ° ^ = P * ° ^ "" *°^ 
« (1 + o(l))*(»)»-1/ f exp ( - cx/2 - (2/<?) exp ( - cx/2))* 

The right side is maximal if c/2 = exp( —c#/2), which completes the 
proof of (2). 

We immediately obtain from (2) and (IS) that 

lim pk0(n)n^2/p(n) ±* exp ( - ca/2 - (2/c) exp ( - ax/2)). 

I t would be easy to sharpen the error term o(nlf2) in (2) by getting 
an error term in (3), but it seems very hard to get a sufficiently good 
inequality to prove the conjecture of Auluck, Chowla and Gupta. 

Denote by Q(n) the number of partitions of n into unequal parts. 
Qk(n) denotes the number of partitions of n into precisely k unequal 
parts. Define ko by 

Qk.(n) ^ Qk(n). 

4 This formula is due to Auluck, Chowla and Gupta (ibid). 
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I t has been conjectured that for faKkï^ko, Qkx{n) <Qk2M and for 
ko<ki<k2j Qki(n)^Qk2(n). This conjecture we can not decide. But 
by using Theorem 3.3 of our paper with Lehner we can show that 

ko = 2 log 2**1'2/7r(l/3)1/2 + dn1'* + o{n1'*) 

for a certain constant d. Also 

lim n1/4QkQ(n)/Q(n) —» e, for a certain constant e. 

We do not discuss the proofs. They are similar but slightly more com­
plicated than the proof of (2). 

I t would be interesting to get an asymptotic formula for pk(n) and 
Qk(n). Perhaps the first step would be to get an asymptotic formula 
for log pk(n). I t is easy to see that for k — o(n1/2) 

log pk(n) = o(n1/2) 

and if k/n112—><*> 

log pk(n)/log p{n) -> 1. 

The proofs can be obtained easily by simple Tauberian theorems. 
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