ON SOME ASYMPTOTIC FORMULAS IN THE
THEORY OF PARTITIONS

PAUL ERDOS

Let p(n) denote the number of unrestricted partitions of #n. px(n)
denotes the number of partitions of # into precisely 2 summands, or
what is the same into partitions whose largest summand is k. Auluck,
Chowla and Gupta! announced the following conjecture:

For n fixed let pi,(n) be the greatest pr(n); that is, pr,(n) = pr(n).
Then

1) ko ~ ¢"n1/? log #, ¢ = w(2/3)12,
They prove that
w2 < ky < (14 8)c~nt/?log n

for every 6>0 if #» is sufficiently large.
In the present note we shall prove (1). In fact we shall prove that

(2 ko = c'n'/? log n + an'/? 4 o(n'/?) where ¢/2 = e~°3/2,

They also conjectured that for ki <k;=<ko, px(n)=pr(n) and for
ko<ki<ks, pr(n)<pr,(n). They verify this conjecture for n=32.
Recently Todd? published a table of all the pi(n) for <100, and
it is easy to verify the conjecture for # <100. I am unable to prove
or disprove this conjecture. They also remark that px,(#) differs from
¢~ n? log n by less than 1 for n <32; (2) shows that for large # the
difference tends to infinity.
Lehner and I8 proved that if we denote

r3k
then for k=c~n!/2 log n+M!/2 we have the asymptotic formula
3) Pi(n)/p(n) = (1 + o(1)) exp (— (2/c)e~*=!%).

In proving (2) we shall use (3) a great deal, we shall also use the
well known asymptotic formula

4) p(n) = (1 + o(1))(1/4-3'%n) exp (cn'/?).
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Let f(n) tend to infinity arbitrarily slowly; we easily obtain from
(3) that for ky= [c='n/2 log n+f(n)n'/?], ky= [c-n'/? log n—f(n)n'/?],

(5) (1/p(m)(Pr,(n) — Pr(n)) > 1 as n— o,

We immediately obtain from (4) and (S) that for some k2 <ks <k
(6) Pra(n) > cip(n)/n'1* > (ca/n*?) exp (cn'’?).

a, ¢, + + + denote absolute constants. Thus

M Pro(n) Z pis(n) > (ca/n?'?) exp (en'!?).

Now we show that for sufficiently large ¢;

€)) ko < ¢ nt? log n + cantl2,

Let ks=cnY? log n-+csnt/2. It clearly follows from the definition of
px(n) and Pi(n) that pi,(n) =Py (n—Fks) <p(n—Fk4). Thus from (4)

pu(n) < (caf/n) exp (c(n — ka)*%) < (ca/n) exp c(n!* — ky/2n11%)
< (cs/n) exp (c(n'!/? — log n/2 — ¢3/2))
< (ca/n1?) exp (cn!?) < piy(m)

for sufficiently large c3, and this proves (8).
Next we prove that for sufficiently large cs

(M) ko > ¢ ntl? log n — cgnt/2,

Suppose (9) does not hold. We obtain from (7) that for some
ko<c'n'?log n—centl?

(10 Pro(m) > (c2/n?'?) exp (cn'/?).

We shall show that (10) leads to a contradiction. First we show that
(11) pr(n) = prs(n + 7) forj = i.
We have

(12) pr(n) = prvi(n + 9) = prri(n + 7).

The first inequality of (12) we obtain by mapping the partition
a1+ - - +kof pr(n)intoas+ - - - +(k+1) which belongs to pris(z-+1),
the second part we obtain by adding j—% 1's to every partition of
prri(n—1); this proves (11).

Put [#!/2]=b; we have from (10) and (11) for 0Zi<b

Prori(n £ B) Z pi(n) > (62/n*?) exp (en'l?)

> (ce/n??) exp (¢(n + b)1/?).
Thus
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b

(13) 2 Prori(n 4 B) > (co/n) exp (c(n + b)1/?).

tu=(
Now we obtain from (5) that for every e and sufficiently large cs
and n
(14) 2 tn+8)> 1 —pn+b).

E>ko+b

The proof of (14) follows immediately from the fact that ko+bd
<c ' log n—(cs—1)n*?, thus (5) can be applied. From (13) and
(14) we have

b
pn+8) > 2 prriln+8) + 2 pa(n+ )
fo() k>ko+b
> (1 — p(n + b) + (cssa) exp (c(n + )'/1%).
Thus
ep(n + b) > (cssm) exp (c(n + b)'/?),

which contradicts (4); this proves (9).
We now know from (8) and (9) that k¢ has to satisfy

c 2 log n — cxnt/? < ko < ¢~n/? log n + cantf3.

Put
ko = ¢"nt/% log n + xnl/2,

We obtain from (3) and (4) that
(15) Pro(n) = Pyy(n — ko)

=14+ o(1))p(m)n12 exp (— ¢cx/2 — (2/c) exp (— ¢cx/2))4
The right side is maximal if ¢/2=exp(—c¢x/2), which completes the

proof of (2).
We immediately obtain from (2) and (15) that

lim pro(n)n'/?/p(n) = exp (— ca/2 — (2/c) exp (— ax/2)).

It would be easy to sharpen the error term o(n/2?) in (2) by getting
an error term in (3), but it seems very hard to get a sufficiently good
inequality to prove the conjecture of Auluck, Chowla and Gupta.

Denote by Q(n) the number of partitions of # into unequal parts.
Qx(n) denotes the number of partitions of % into precisely k unequal

parts. Define k¢ by
Qko(n) % Qk(”)‘

4 This formula is due to Auluck, Chowla and Gupta (ibid).
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It has been conjectured that for ky <ks < ko, Qr, (1) <Qi,(n) and for
ko<ki<ks, Qur(n)=Qr,(n). This conjecture we can not decide. But
by using Theorem 3.3 of our paper with Lehner we can show that

ko = 2 log 2n'2/x(1/3)112 + dnt!t 4 o(nll4)
for a certain constant d. Also
lim #1/4Qy,(n)/Q(n) — ¢, for a certain constant e.

We do not discuss the proofs. They are similar but slightly more com-
plicated than the proof of (2).

1t would be interesting to get an asymptotic formula for px(z) and
Qi(n). Perhaps the first step would be to get an asymptotic formula
for log px(n). It is easy to see that for k=o0(n/?)

log pi(n) = o(n'’?)
and if B/n'2—x
log pi(n)/log p(n) — 1.
The proofs can be obtained easily by simple Tauberian theorems.
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