
A NOTE ON WEAK DIFFERENTIABILITY OF 
PETTIS INTEGRALS 

M. EVANS MUNROE 

Pettis1 raised the question whether or not separability of the range 
space implies almost everywhere weak differentiability of Pettis in­
tegrals. Phillips2 has given an example which answers this question 
in the negative. His construction is based on a sequence of orthogonal 
vectors in Hilbert space. We present here a different example of the 
same type of function. Our basic construction is that of a function 
defined to the space C. Using that function as a basis, we are able to 
give a specific construction of such a function defined to each member 
of a large class of Banach spaces. 

1. Metric density properties of a non-dense perfect set Let 
J3C [0, l ] be a non-rdense perfect set of measure one-half, and let B 
be its complement. ~B may be constructed by taking the sum of a set 
of open intervals classified as follows : 

1 interval of length 1/4, 
2 intervals each of length 1/16, 
4 intervals each of length 1/64, 

2n~1 intervals each of length l/22n, 

We shall refer to the intervals of length l/22 n as intervals of 2? of 
order n. We shall assume that each interval of "E of order n is the 
center portion of the space either between two intervals of "B of lower 
order or between one such interval of 5 and an end point of the unit 
interval. These spaces we shall refer to as gaps of order n, and we shall 
denote such a gap by the symbol Gn. If B is constructed as noted 
above, then for each w, any two sets each of the form Gn- 2* are con­
gruent; hence we shall use Gn to denote a gap of order n, and we shall 
not find it necessary to specify which one. 

The following three lemmas are now obvious. 

1.1. LEMMA. |2TG»| «1/22»-1. 

1.2. LEMMA. \G»\ = 1/2»+1/2*—l. 
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1 See [3, p. 303]. Numbers in brackets refer to the references cited at the end of the 
paper. 

2 See [4, p. 144]. 
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1.3. DEFINITION. If I is any subinterval of [0# l ] , we define 

p ( / ) = | I . / | / | j | . 

1.4. LEMMA. p(Gn) = 1/(1+2*-*). 

The following important lemma demonstrates a lower bound on the 
density function p. This lower bound may tend to zero as 11\ tends 
to zero, but it is independent of the location of J. 

1.5. LEMMA. If 

\l\ è\Gn\ - 1/2* + l/22»~*, 
then 

p(I) > 1/(2 + 2- i ) . 

First suppose \l\ = | Gn\. For all such I the Gn have minimum val­
ues for p; for if I = Gn and then is moved a little to the right or left, 
some points of B are excluded and only points of B are included— 
thus obviously increasing p(I)—until the interval of 5 is covered. 
However, this interval of 5 is of order at most « — 1 and hence has 
measure at least l/22w~2; thus so long as I contains this interval of "Bt 

1/22*-2 2 
ptj) > : « « 2p(Gn). 
PK } 1/2» + 1/2»—* 1 + 2-1 PK J 

If I is moved on beyond this interval of 5 the above argument applies 
again by considering the movement in the reverse direction. Compari­
son with Lemma 1.4 now shows that Lemma 1.5 is established in case 
|JHG„|. 

Consider now the effect of increasing \l\. If \l\ =|G:
W| and I con­

tains no interval of J3 of order less than or equal to n — 1, then one 
end point of I (let us assume it is the right-hand one) lies in the closure 
of such an interval of "E. Thus any small extension of I to the right 
will (until the interval of 5 is covered) add to J only points of 2*, 
thus obviously increasing p(7). If I ^Gn at the start, a small extension 
to the left will have the same effect. Otherwise an extension to the 
left may be regarded as a translation to the left and a subsequent 
extension to the right, and these cases have already been discussed. 
In case I contains an interval of "B of order not greater than n— 1, we 
have \B-I\ >l /22»-2 ; thus if | / | :g|Gn-i| =l/2»- l+l/22»-*, 

!/22n~2 l 
p(I) > « 

l/2»-i + l/22»~* 2 + 2»~* 
If | ƒ | > | Gn-i\ t the above argument may be repeated with n — 1 sub-
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stituted for n, thereby obtaining an even larger lower bound for p(7). 
This proves Lemma 1.5 for all cases. 

1.6. LEMMA. For all 7C[0, l ] , 

P(I) >|5-/|*>V25 /2 . 

We shall prove Lemma 1.6 by showing that, for each w, the required 
inequality holds for 

This will cover all possibilities. For | JB-7| in this range, we consider 
first the case 11\ < \ Gn\ = l /2n+l/22 n~1 . In this case 

1 I/I I/I l/^+l/^2*-1 

p(I) \B'l\ 1/22**1 1/22»*1 

«- 4 + 28/2[l/22»-1]-1'2 g 4 + 28>2| E ^ - 1 ' 2 . 

Considering now the case \l\ §£ | Gn| (and assuming | 2 -1 | still in the 
same range) we have, using Lemma 1.5 and the above inequalities, 

l/p(7) < 2 + 2»-1 < 4 + 2"+l S 4 + 28'21 5-7 h1'2. 

Now for all 7C[0, l ] , | 5 - l | S1/2; hence | S ^ j - 1 ' 2 ^ 1 ' 2 ; hence 
4 ̂  23/21 B • 7| ~l/2. Combining this with the above results, we have 

1/P(7) < 4 + 28'2| BI h1'2 S 25'2| IB 11"1'2, 

whence 
p(7) >|3./ |*/y2»/*. 

2. An approximately continuous function whose integral is non-
differentiable. For each tÇ~B we define the function ƒ <(*) for # 6 [0,1 ] 
as follows 

ƒ•<*) « { 0 for a; ^ * or x 6 £, 
B- [/, x] |~8'4 for a > t and # G 5. 

2.1. THEOREM. Tbr eacA / £ # , ƒ*(#) is aw integrable f unction of x, 
and for x%^xi^t$ 

ƒ ƒ,(*)<** - 4( | 5 - [/, x2] J1" - 1 1 - [/, Xl] I1"). 

Let s = | 'S- [tt x]\. Since the intervals of 2? are dense in [0, l ] , this 
defines z as a strictly monotone function of x; hence x is a single-
valued function of z, and we may write ƒ i [#(*)]. Now for #>J and 
xÇ~Bf dx**dz\ thus the function z(x) is measure preserving over 3 
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• [t% x] and hence maps B • [t, x] into a set of measure zero. Therefore, 
for almost all z, ft[x(z)] =2~8/4; and dx~dz except where ƒ t(x) = 0 ; so 

I fi(x)dx = I 2 as = 4(22 — Z\ )• 

2.2. THEOREM. For £ £ 5 , the f unction 

w wo/ differentiatie with respect to x at x~t. 

Again letting s = | 2T [/, # ] | , and using Theorem 2.1 and Lemma 
1.6, we have 

Thus 

—Li « = 42-3/4 
# _ i x — t (7=1)= 4*~ 8 / 4 p (k x]) 

Ft(x) 
lim sup â Hm (4z)~"1/4 = oo. 

x-*t X — / *—>0 

In the next section we shall make further use of the functions ƒ <(#) 
and their properties as shown in Theorems 2.1 and 2.2. We might 
note here, however, that ft(x) is approximately continuous at t pro­
vided 2* has metric density zero at t. This is true for almost all tin B; 
hence for such t, ft(x) furnishes a specific example of an approxi­
mately continuous function whose integral is not differentiable. 

3. A Pettis integral in the space C which is not almost everywhere 
weakly difiEerentiable. We shall here define a function 0(x) from [0, l ] 
to the space C Our notation will be as follows: For each # £ [0, l ] , 
<t>(x) stands for a continuous function on [0, l ] ; we denote this con­
tinuous function by <t>x(t). We shall define the functions <j>x(t) by de­
fining a function $(x, t) over the unit square and setting 4>x(t) =#(# , t). 
We first define #(#, 0 over a portion of the unit square as follows: 

, N ( 0 for xGB, 
4>{x, t) = { , 

\ft(x) for % G B. 

Since ƒ t(x) = 0 for xÇiB, these statements are consistent. 

3.1. LEMMA. For a fixed x, <t>(x, t) is continuous in t over B. 

This statement follows immediately from the fact that if one end 



1946] WEAK DIFFERENTIABILITY OF PETTIS INTEGRALS 171 

point of I is fixed, 15- l\ ~8/4 is a continuous function of the other end 
point over any set such that \l\ is bounded away from zero. This 
latter restriction causes no difficulties here. If x(~B, <t>(x, t)=0; if 
xEB, dist (#, B)>0. _ 

We now continue the definition of <t>(xt t). For each xGB, let<f>(x, t) 
be continued linearly over each interval of the set tÇ~~B. This com­
pletes the definition of <t>(xy t) over the entire unit square, and it is 
clear that for each x, <j>(x, t) is continuous in t over [0, 1 ]. 

3.2. THEOREM. <f>(x) is integrable in the sense of Pettis. For each 
measurable set EC. [0, 1 ], its integral over E is the function 

$E(t) = I <t>(u, t)du. 
JE 

We show this by considering the functions <t>(n)(x) whose values are 
the continuous functions #»(n)(J)=0(n)(#, t) where 

,t W A ƒ*(*»*) f ° r * ( * » # ^ W» 
<f>{n>(xt t) = < 

{ n for <£(#, /) > n. 
It is easily seen that for each tÇz [O, 1 ], each <£(tt)(#, t) is bounded and 
continuous in x over 2?. Thus8 each <t>(n)(x) is weakly continuous over 
"E. Since <j>^n)(x)=6 for xGB, it is clear that each <j>(n)(x) is weakly 
measurable. Since C is a separable space, it follows4 that each #(n)(#) 
is measurable. Now each <£(w)(#) is bounded, hence Bochner integra­
ble, hence Pettis integrable, therefore integrable with respect to each 
of the linear functionals Yt[<Ê(n)(#)]=<Ê*(n)(0; thus 

$<«>(£) » I </}^(u)du 
JE 

is the continuous8 function 

4n)(/) « f 0(n)(w, f)du. 
JE 

Clearly for each x and each t> 

l i m ^ W -* .W; 

8 See [l, p. 224, Theorem 8]. 
4 See [3, Theorem 1.1 ] . 
5 An independent proof of continuity of *#<n)(0 is unnecessary. Since <f>^n)(x) is 

Pettis integrable, it is integrable to an element of C; and the set \yt} of linear func­
tionals defines this element uniquely. 



172 M. E. MUNROE {February 

furthermore this approximation is monotone in n. Thus |f <£(n) (x) ~<f>(x) || 
is bounded in n for each x; hence* $Cn)(#)—*£(#) weakly for each x. It 
now follows7 that <j>(x) is Pettis integrable provided the sequence 
| <£(n)(£)} converges with respect to the norm in C; that is, provided 
{$*<*>(*)} converges uniformly in t. We shall complete the proof of 
Theorem 3.2 by showing that for each measurable E C [0, l ] 

3>i?(/) = I <f)(uf t)du 
JE 

exists for each t and that this function is the uniform limit of the se­
quence {$j5y(n)(0}* 

To show that $#(0 exists is trivial. For *££ , this follows from 
Theorem 2.1. For each xy <£(#, t) is extended linearly over each inter­
val of * £ £ ; hence for / E 5 , <f>(x, t) ^0(#, h)+<t>(xf h) where h and h 
are each in B. This completes the proof of integrability. 

Now with each tS [0, l ] we associate two numbers h and h as fol­
lows: h is the greatest number such that *I£JB and k^t\ h is the 
smallest number such that hÇ~B and hfZt. Geometrically this means 
that if *EB, /i=J=/2, while if / £ # , h and h are the left and right 
points respectively of the interval of 5 in which t is located. 

Now for hSx<h, <f>(x, t) S<f>(x, h) while for x£^2, <f>(xf t)£4f(x, fe). 
Thus for any given ££ [O, 1 ], it is possible to have 4>(x, t)>n only for 
those values of x for which either 

h£ x <h and [ 5- [h, x] \ < tr*'z 

or 

x£ h and |3-[/ t , * ] | <trilz. 

Outside these two intervals <t>(x, t) — #(w)(#, /) =0 ; hence if we denote 
these intervals by Ji and I2, we have 

J [<t>(x, t) - 4>(w)(*, /)]</* £ f *(*, *)<to + f «(*» 'M* 

è I *(*, h)dx + I <£(*, h)dx 

0 

« See [l, p. 224, Theorem 8]. 
* See [3, Theorem 4.1]. 
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Thus, clearly, limn^oo$^(n)(^) = $^(0 uniformly in t. This completes the 
proof of Theorem 3.2. 

3.3. THEOREM. If XoGB, <£>(#) =f*<t>(u)du is not weakly differentia-
able at Xo. 

By Theorem 2.2, it fails to be differentiable at x0 with respect to 
the linear functional yxQ[$(x)] = $x(xo). 

4. Extension to other spaces of continuous functions. The function 
<f>(x) of §3 may be used as the basis for the construction of a large set 
of examples as follows : 

4.1. THEOREM. If Q is a compact metric space containing non-de-
numerably many points and if C(B) is the Banach space of all continu­
ous f unctionals on Q, then there is a function \[/(x) from the unit interval 
to C(Q) such that \f/(x) is Pettis integrable but ty(E) =fE^(x)dxfails to 
be weakly differentiable on a set of positive measure. 

Since Q is non-denumerable, it contains a perfect set. This perfect 
set is a complete metric space which is dense in itself and hence con­
tains a homeomorph II of the Cantor set B.% 

Let B=h(IL) be the homeomorphic mapping of II into B. Then 
h(œ) is a continuous function denned over II, assuming values be­
tween 0 and 1, and assuming for some wEII each value in the set B. 
Let i?(co) be a continuous extension9 of h(œ) over the whole of Q with 
Ogff(w)gl. 

Now for each ££ [0, l ] we define 

K(t) = e{H(œ) = / } . 

It should be noted that although for some /, K(t) may be vacuous, 
for each / £ £ , K(t) contains at least one point. 

Referring back to the functions <f>x{t) of §3, we now define 

lM«) = 4>*(t) for co G K(t). 

It follows from the continuity in / of each function <f>x(t) and from the 
continuity of -ff(co) that for each xG [0,1 ], t/^co) is continuous over Q. 
For each # £ [0, l ] we now let \[/(x) be the element ipx(œ) of C(Q). 

8 See [2, p. 228], The author is indebted to the referee for the suggestion that non-
denumerability of Q is sufficient to insure the existence of H. 

9 See [2, p. 211]. In connection with our remark in the introduction that we have 
a specific construction applicable to the more general spaces, it should be noted that 
this extension theorem is not merely an existence proof. A definite formula for the 
extension is given. 
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That \f/(x) has the required properties may be seen as follows : To 
show integrability, we note that for each coÇztt, \f/x(o)) is identical (as 
a function of x) with <j>x(t) for some ££[0 , l ] . Then noting that 
Banach's criterion for weak convergence10 applies to the space C(Q), 
we apply the proof of Theorem 3.2. To show non-differentiability, we 
note that for each tÇiB there is an co£Q such that \l/x(o)) =<j>x(f) for 
all # £ [0, l ] . The proof of Theorem 3.3 then applies. 
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