A NOTE ON WEAK DIFFERENTIABILITY OF
PETTIS INTEGRALS

M. EVANS MUNROE

Pettis* raised the question whether or not separability of the range
space implies almost everywhere weak differentiability of Pettis in-
tegrals. Phillips? has given an example which answers this question
in the negative. His construction is based on a sequence of orthogonal
vectors in Hilbert space. We present here a different example of the
same type of function. Our basic construction is that of a function
defined to the space C. Using that function as a basis, we are able to
give a specific construction of such a function defined to each member
of a large class of Banach spaces.

1. Metric density properties of a non-dense perfect set. Let
BC [0, 1] be a non-dense perfect set of measure one-half, and let B
be its complement. B may be constructed by taking the sum of a set
of open intervals classified as follows:

1 interval of length 1/4,
2 intervals each of length 1/16,
4 intervals each of length 1/64,

ooooooooooooooooooooo

.

We shall refer to the intervals of length 1/2%* as intervals of B of
order n. We shall assume that each interval of B of order # is the
center portion of the space either between two intervals of B of lower
order or between one such interval of B and an end point of the unit
interval. These spaces we shall refer to as gaps of order n, and we shall
denote such a gap by the symbol G,. If B is constructed as noted
above, then for each #, any two sets each of the form G,- B are con-
gruent; hence we shall use G, to denote a gap of order 7, and we shall
not find it necessary to specify which one.
The following three lemmas are now obvious.

1.1. Lemma. | B-G,| =1/221,
1.2. LEMMA. |G.| =1/2741/221,
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1 See [3, p. 303]. Numbers in brackets refer to the references cited at the end of the
paper.

2 See [4, p. 144].
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1.3. DerINITION. If I is any subinterval of [0, 1], we define
o) =|B-1]/|1].
1.4. LEMMA. p(G,)=1/(1+2%1).

The following important lemma demonstrates a lower bound on the
density function p. This lower bound may tend to zero as |I| tends
to zero, but it is independent of the location of I.

1.5. LEmMMA. If

| I| = |G| = 1/27 + 1722+,
then
o(I) > 1/(2 + 27,

First suppose | I| =|Ga|. For all such I the G, have minimum val-
ues for p; for if I =G, and then is moved a little to the right or left,
some points of B are excluded and only points of B are included—
thus obviously increasing p(I)—until the interval of B is covered.
However, this interval of B is of order at most #—1 and hence has
measure at least 1/227-2; thus so long as I contains this interval of B,

2n—2
> 2 .
1/2n+1/22n1 1+2n1
If I is moved on beyond this interval of B the above argument applies
again by considering the movement in the reverse direction. Compari-
TOT wi!th Il‘emma 1.4 now shows that Lemma 1.5 is established in case
I| =|Gal.

Consider now the effect of increasing |I|. If |I| =|G.| and I con-
tains no interval of B of order less than or equal to n—1, then one
end point of I (let us assume it is the right-hand one) lies in the closure
of such an interval of B. Thus any small extension of I to the right
will (until the interval of B is covered) add to I only points of B,
thus obviously increasing p(I). If I =G, at the start, a small extension
to the left will have the same effect. Otherwise an extension to the
left may be regarded as a translation to the left and a subsequent
extension to the right, and these cases have already been discussed.
In case I contains an interval of B of order not greater than n—1, we
have | B-I| >1/22%2; thus if |I| £|Gau| =1/27141/22%3,

1/22n2 1
1/271 4 1/20%-% 2 4 202
If | I| >|Gan], the above argument may be repeated with #—1 sub-

o(I) >
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stituted for #, thereby obtaining an even larger lower bound for p(I).
This proves Lemma 1.5 for all cases.
1.6. LEMMA. For all ICJ0, 1],
o(I) > | B-1|vz/2802,

We shall prove Lemma 1.6 by showing that, for each , the required
inequality holds for

1/20m1 < | B-I| 5 17201,

This will cover all possibilities. For | B-I| in this range, we consider
first the case | I| <|G.| =1/27+1/22m1, In this case

1 | 1] | 1] 1/2% 4+ 1/22n1

o(I) = | B-1| < 1/22n+1 < 1/2tn+1
= 4 4 282[1/221]-12 < 4 4 2%2| B.T |12,

Considering now the case | I| 2 |Ga| (and assuming | B-I| still in the
same range) we have, using Lemma 1.5 and the above inequalities,

1/6(I) < 24 271 < 4 + 2%1 < 4 4 283| B.I |18,

Now for all IC[0, 1], | B-I| £1/2; hence | B- I|-Y/222"2; hence
4 £2%2| B-I|-¥2 Combining this with the above results, we have

1/e(I) < 4+ 2‘/2I :-B-.Il—llz =< 25/21 B’Il"”’,

=4 4 271

whence -
p(I) > | B-1|12/2808,

2. An approximately continuous function whose integral is non-
differentiable. For each & B we define the function f.(x) for x€ [0, 1]
as follows

0 forx Stor x &€ B,
| B-[¢, ]| for x > tand x € B.

2.1. THEOREM. For each tEB, fi«(x) is an integrable function of x,
and for xa =%, 21,

M@={

LﬁM@u=4d?Dde“%Fwame.

Let z=| B-[t, x]|. Since the intervals of B are dense in [0, 1], this
defines z as a strictly monotone function of x; hence x is a single-
valued function of 2, and we may write f,[x(z)]. Now for x>¢ and
£ E B, dx=dz; thus the function z(x) is measure preserving over B
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- [t,x] and hence maps B- A x] into a set of measure zero. Therefore,
for almost all 2, f;[x(3)] =273/4; and dx =dz except where f(x) =0; so

x2 z2 -
f fi(x)dx = f 2 3“dz = fl(z«z/4 - zi“).
z1 21

2.2, THEOREM. For t& B, the function

Fi(x) =fzf¢(u)du

is not differentiable with respect to x at x =t.

Again letting z=| B- [¢, x]|, and using Theorem 2.1 and Lemma
1.6, we have

1/4
Fi(a)  4a' - (
x—1t x-—1

2z
— ¢> — agvian([1, x])
> 4z7314(g112/2512) = (4g)1/4,
Thus
Fy(x)

lim sup = lim (42)"Y4 = o0,
=t X — 1 -0

In the next section we shall make further use of the functions f.(x)
and their properties as shown in Theorems 2.1 and 2.2. We might
note here, however, that f.;(x) is approximately continuous at ¢ pro-
vided B has metric density zero at ¢. This is true for almost all ¢ in B;
hence for such ¢, fi(x) furnishes a specific example of an approxi-
mately continuous function whose integral is not differentiable.

3. A Pettis integral in the space C which is not almost everywhere
weakly differentiable. We shall here define a function ¢(x) from [0, 1]
to the space C. Our notation will be as follows: For each x& [0, 1],
¢(x) stands for a continuous function on [0, 1]; we denote this con-
tinuous function by ¢.(¢). We shall define the functions ¢,(t) by de-
fining a function ¢ (x, ¢) over the unit square and setting ¢,(t) =¢(x, t).
We first define ¢(x, t) over a portion of the unit square as follows:

0 for x & B,
é(x, 8) =
fi(x) for t€& B.
Since f.(x) =0 for x € B, these statements are consistent.
3.1. LEMMA. For a fixed x, ¢(x, t) is continuous in t over B.

This statement follows immediately from the fact that if one end
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point of I is fixed, | B-I|-¥*is a continuous function of the other end
point over any set such that |I| is bounded away from zero. This
latter restriction causes no difficulties here. If xEB, ¢(x, ) =0; if
xEB, dist (x, B)>0.

We now continue the definition of ¢(x, ). For each x € B, let ¢(x, £)
be continued linearly over each interval of the set & B. This com-
pletes the definition of ¢(x, £) over the entire unit square, and it is
clear that for each x, ¢(x, t) is continuous in ¢ over [0, 1].

3.2. THEOREM. ¢(x) is integrable in the sense of Pettis. For each
measurable set EC [0, 1], its integral over E is the function

B5(l) = f (u, §)du.
E
We show this by considering the functions ¢(™ (x) whose values are

the continuous functions ¢, (t) =¢™ (x, t) where

¢(x,8) for o(x, %) = n,
(n) L 1) =
o@ (= ) { n for ¢(=, H) > n.

It is easily seen that for each t& [0, 1], each ¢(™ (x, ) is bounded and
continuous in x over B. Thus® each ¢(™(x) is weakly continuous over
B. Since ¢ (x) =0 for x €B, it is clear that each ¢™(x) is weakly
measurable. Since C is a separable space, it follows* that each ¢ (x)
is measurable. Now each ¢ (x) is bounded, hence Bochner integra-
ble, hence Pettis integrable, therefore integrable with respect to each
of the linear functionals v:[¢™(x)]=¢.™(f); thus

PW(E) = fgd,(“)(u)du
is the continuous® function
<I>1(;")(t) = fg«pm(u, Hdu.
Clearly for each x and each ¢,

lim o () = ¢2(0);

8 See 1, p. 224, Theorem 8].

4 See 3, Theorem 1.1].

8 An independent proof of continuity of &z (f) is unnecessary. Since ¢®(x) is
Pettis integrable, it is integrable to an element of C; and the set {v:} of linear func-
tionals defines this element uniquely.
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furthermore this approximation ismonotone in z. Thus ”d)(") ()=o)
is bounded in % for each x; hence? ¢(" (x)—¢(x) weakly for each x. It
now follows? that ¢(x) is Pettis integrable provided the sequence
5<I><"’ (E){ converges with respect to the norm in C; that is, provided
Pp(™(t){ converges uniformly in £&. We shall complete the proof of
Theorem 3.2 by showing that for each measurable EC[0, 1]

() = fE oo, du

exists for each ¢ and that this function is the uniform limit of the se-
quence {®z™(¢)}.

To show that ®g(t) exists is trivial. For tEB, this follows from
Theorem 2.1. For each x, ¢(x, t) is extended linearly over each inter-
val of t& B; hence for tE B, ¢(x, t) S¢(x, &) +¢(x, ) where ¢ and 4
are each in B. This completes the proof of integrability.

Now with each t&[0, 1] we associate two numbers #, and ¢ as fol-
lows: #; is the greatest number such that #,€B and t, <t¢; tp is the
smallest number such that {2& B and t:2¢. Geometrically this means
that if ¢€B, ty=t=t,, while if t& B, ¢, and {; are the left and right
points respectively of the interval of B in which ¢ is located.

Now for ¢ Sx <ts, ¢(x, t) S¢(x, t) while for x =1ts, P(x, £y Sé(x, ta).
Thus for any given &€ [0, 1], it is possible to have ¢(x, £) > only for
those values of x for which either

h<ax<t and | B [, x]| <ns
or
£t and | B[ty 2]| < nin.

Outside these two intervals ¢(x, £) —¢(™ (x, £) =0; hence if we denote
these intervals by I and I, we have

f [6(x, &) — o™ (x, )]dx < | ¢(x, dx+ | #(x, t)dx
B In Ip
In Is

n—4/3
< 2f g~34dz = 8u108,
0

8 See [1, p. 224, Theorem 8].
7 See [3, Theorem 4.1].
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Thus, clearly, limy, ., ®r™ (t) = ®(¢) uniformly in ¢. This completes the
proof of Theorem 3.2.

3.3. THEOREM. If x0EB, ®(x) = [ ¢(u)du is not weakly differentia-
able at x,.

By Theorem 2.2, it fails to be differentiable at x, with respect to
the linear functional v,,[®(x) ] = ®,(x0).

4. Extension to other spaces of continuous functions. The function
@(x) of §3 may be used as the basis for the construction of a large set
of examples as follows:

4.1. THEOREM. If Q is a compact metric space containing non-de-
numerably many points and if C(Q) is the Banach space of all continu-
ous functionals on Q, then there is a function Y(x) from the unit interval
to C(Q) such that Y(x) is Pettis integrable but ¥(E) = [y (x)dx fails to
be weakly differentiable on a set of positive measure.

Since @ is non-denumerable, it contains a perfect set. This perfect
set is a complete metric space which is dense in itself and hence con-
tains a homeomorph II of the Cantor set B.3

Let B=h(II) be the homeomorphic mapping of II into B. Then
k(w) is a continuous function defined over II, assuming values be-
tween 0 and 1, and assuming for some w&II each value in the set B.
Let H(w) be a continuous extension® of z(w) over the whole of @ with
0<H(w)=1.

Now for each tE[0, 1] we define

K@) = §{H(w) = t}.

It should be noted that although for some ¢, K(¢) may be vacuous,
for each tEB, K(t) contains at least one point.
Referring back to the functions ¢.(f) of §3, we now define

VYao(w) = ¢.() for w & K(¥).

It follows from the continuity in ¢ of each function ¢.(f) and from the
continuity of H(w) that for each x € [0, 1], ¥.(w) is continuous over .
For each x&€ [0, 1] we now let ¥(x) be the element ¥.(») of C(Q).

8 See [2, p. 228]. The author is indebted to the referee for the suggestion that non-
denumerability of @ is sufficient to insure the existence of II.

9 See [2, p. 211]. In connection with our remark in the introduction that we have
a specific construction applicable to the more general spaces, it should be noted that
this extension theorem is not merely an existence proof. A definite formula for the
extension is given.
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That y(x) has the required properties may be seen as follows: To
show integrability, we note that for each wEQ, ¥,(w) is identical (as
a function of x) with ¢,(t) for some ¢&[0, 1]. Then noting that
Banach'’s criterion for weak convergence!?® applies to the space C(2),
we apply the proof of Theorem 3.2. To show non-differentiability, we
note that for each t&B there is an wEQ such that ¢.(w) =¢.(f) for
all x€ [0, 1]. The proof of Theorem 3.3 then applies.

REFERENCES

1. S. Banach, Théorie des opérations linéaires, Monografje Matematyczne, War-
saw, 1932,

2. C. Kuratowski, Topologie, 1, Monografje Matematyczne, Warsaw, 1933.

3. B. ]. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. vol. 44
(1938) pp. 277-304.

4. R. S. Phillips, Integration in a convex linear topological space, Trans. Amer.
Math. Soc. vol. 47 (1940) pp. 114-145.

UNIVERSITY OF ILLINOIS

10 This is used in the proof of Theorem 3.2. See footnotes 3 and 6.



