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The proof of Theorem 10.3 is similar, but with obvious modifica­
tions. 
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EMMANUEL MISSIONARY COLLEGE 

A SIMPLE SUFFICIENT CONDITION THAT A METHOD OF 
SUMMABILITY BE STRONGER THAN CONVERGENCE 

RALPH PALMER AGNEW 

1. Introduction. A matrix anh of real or complex constants deter­
mines a transformation 

(1) <T» » 23 ankSk 

and a method A of summability by means of which a given sequence 
Su S2, • • • is summable to <r if the series in (1) converge and define 
numbers <ri, 0*2, •• • such that crw—><r as w—»oo. If a sequence sn is 
summable A, we say that A {sn} exists and that sn belongs to the sum­
mability field of A. If sn is summable A to <r, we say that A {sn} = <r. 
The method A is regular if A {sn} = lim sn whenever lim sn exists. 

Toeplitz [l91l] (reference in bibliography at end of this paper) 
proved that A is regular if and only if the three conditions 

00 

(2) T,\ank\ S M, n - 1, 2,3, ••• , 
*«i 

(3) lim ank = 0, k = 1, 2, 3, • • • , 

00 

(4) lim 22 anh « 1 
n-»oo kwml 
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are satisfied, M being a constant depending on the matrix an*. Im­
mediately thereafter, Steinhaus [1911 ] proved that no regular A has 
a summability field containing all sequences; in fact, to each A corre­
spond sequences, whose elements are zeros and ones, which are non-
summable A. Actually, Toeplitz and Steinhaus considered only row-
finite transformations, but their methods give the facts stated. 

An attempt to prove that each regular A has a summability field 
containing some divergent sequences cannot succeed, because there 
exist regular methods A whose summability fields are identical with 
the class of convergent sequences. Convergence is the simplest ex­
ample. A classic theorem of Mercer [1907] and its generalizations, 
known as Mercerian Theorems, provide further examples. More ex­
amples of less special forms have been given by Agnew [1932], 
Sunouchi [1934] and Radó [1938]. It is the purpose of this paper to 
prove and discuss the following theorem and a generalization of it. 

THEOREM 1. If A is regular and satisfies the condition 

(5) lim ank = 0 
n,k-*oo 

then some divergent sequences of zeros and ones are summable A. 

This theorem and the result of Steinhaus given above combine to 
yield the following theorem. 

THEOREM 2. If A is regular and satisfies (5), then some but not all 
divergent sequences of zeros and ones are summable A. 

It is of course well known and obvious that if the matrix ank has 
an inverse ank, in the sense that (1) holds if and only if 

CO 

then at least one divergent sequence sn is summable A (such that <rn 

converges) if and only if the matrix ank fails to be conservative. The 
more general case in which the transformation (1) is reversible (in 
the sense of Mazur and Banach) was treated by J. D. Hill [1942]. 
The virtue of the criterion (5) lies in the fact that it is a simple cri­
terion involving the matrix ank itself; it may be used when ank has 
no inverse, and when the inverse exists but is so complicated that the 
test for conservatism is not easily applied. 

2. The condition (5). Each of the conditions (2), (3), and (4) has 
an obvious interpretation involving the matrix 
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ÖHÖ12Ö18 • • • an • • • 

( 6 ) Ö2ia22023 * * ' Ù2k * * * 

For example, (3) means that the elements of each column form a se­
quence converging to zero. The meaning of (5) is, roughly, that | ank\ 
is near zero whenever both n and k are large. 

When a matrix satisfies (2), (3), and (4), there are several condi­
tions which imply and are implied by (5). One is the condition (8) 
displayed below; it says, in other words, that the limit in (3) is uni­
form over the set i » l , 2, 3, • • • . 

3. A generalization of Theorem 1. While proving Theorem 1, we 
can, without introducing complications, prove the following more 
general theorem. 

THEOREM 3. If the matrix ank o f A is such that 
CO 

(7) Z U n * | < » , fl - 1, 2,3, • •• , 

* - l 

and 
(8) Urn max | an* | « 0, 

then there is at least one divergent sequence, whose elements are zeros and 
ones, which is summable A. 

Actually, the proof will show clearly that there are "many" such 
sequences summable A. 

4. Proof of Theorem 3. Let anh be a matrix satisfying (7) and (8). 
We establish Theorem 3 by exhibiting a divergent sequence sn, whose 
elements are all zeros and ones, which is summable A to zero. To 
simplify typography, we sometimes write a(n, k) and s(k) for ank 
andsfc. Let a(l), a(2), • • • be a sequence, of positive numbers, which 
converges to 0 so rapidly than na(n)—>0; for example, let a(n) ~n~~2. 
Let 0(1), j8(2), • • • be a sequence, of positive numbers, which con­
verges to 0. The hypothesis (8) implies existence of an increasing se­
quence n(l)<n(2)< • • • of positive integers such that, for each 
* - l , 2, • • • , 

(9) | anth | g a(p), * 2 n„ A - 1, 2, • • • . 

Such a sequence n(p) being fixed, the hypothesis (7) implies that if 
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fe(l), Jfe(2), • • • is a sequence of integers which becomes infinite suffi­
ciently rapidly, then, for each p**lt 2, 3, • • • , 

00 

(10) Z I **.* I ^ P(P) f nPgn< Hp+i. 

Let a sequence k(p) be fixed such that (10) holds and k(p+l)>k(p) 
+ 1 for each £ = 1, 2, • • • . Let sif s2, • • • be the particular sequence 
of zeros and ones defined by 

Sk « 1, k « £x> £2, £3, . . • f 

$* « 0 otherwise. 

Then Sk — 1 for an infinite set of fc's and 5& = 0 for an infinite set of fe's; 
hence the sequence is divergent. Moreover the transform <n, o-2, • • • 
of this sequence is such that, when £ = 1, 2, 3, • • • and np£n<np+i, 

2 J a(», £)*(£) ]C a(», kj) 
y-i 

p 

£ Z «(*) + S I «(*. *) I < P*(P) + P(P). 

Therefore, since pa(p)~-*0 and j8(£)—>0, <rw-»0. Thus the particular 
divergent sequence of zeros and ones is summable -4 to 0 and Theo­
rem 3 is proved. 

5. Relations between two methods of summability. Let B and C be 
two matrix methods of summability regular or not, of the form (1). 
It is the purpose of this section to discuss standard general procedures 
for determining relations between B and C, and to show how Theo­
rems 1 and 3 may be used. One says that B includes C, or I O C , if 
<B{sw} ~C{$n] whenever C\sn] exists; and that B is stronger than C 
ii B{sn] exists whenever C\$n} exists, while B{sn} exists for at least 
one sequence for which C{sn} fails to exist. Two methods B and Care 
consistent if B{sn} **C{sn) whenever both B{sn} and C{sn} exist, 
and are equivalent if B\sn) ~C{sn} whenever at least one of B{sn} 
and C{sn\ exist. 

For simplicity, we assume that C is triangular and has an in­
verse; this means that cnk — 0 when k>n and that cnn7*0 for each 
w = l, 2, • • • . Let a>nk be the matrix of the transformation A de­
fined by A —BC~l. It is standard practice to use the fact that BZ)C 
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if and only if A is regular, that is, if and only if (2), (3), and (4) hold. 
If, in a particular case, one shows that (2), (3), and (4) hold, one 
knows that BZ)C; the methods must then be consistent, but it re­
mains unknown whether (i) B and C are equivalent or (ii) B is 
stronger than C. If, in addition to (2), (3), and (4), one shows that 
(5) holds, then, by Theorem 1, B must be stronger than C. 

There are cases in which, by reason of algebraic difficulties or by 
reason of actual failure of the conditions, one is unable to show that 
(2), (3), and (4) hold. (Those who work in the field know that the 
"norm condition" (2) is frequently the troublesome one.) It may 
nevertheless be possible to show that (7) and (8) hold. In such cases, 
Theorem 3 implies existence of sequences summable B but nonsum-
mable C. 
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