
ON THREE PROBLEMS CONCERNING NIL-RINGS 

JAKOB LEVITZKI 

1. Introduction. In the present note three problems concerning 
nil-rings are proposed and certain relations linking these problems to 
one another are discussed. 

First problem. The sum of all two-sided1 nil-ideals of a ring S has 
been defined by G. Koethe [2, §3]2 as the radical of 5, provided that 
this sum contains also all one-sided nil-ideals of S. We shall hence­
forth refer to this radical as the iT-radical3 of S. I t is an open question 
whether or not there are rings in which the 2£-radical does not exist. 

Second problem. A ring T is called semi-nilpotent (see [3, §2]) if 
each finite set of elements in T generates a nilpotent ring. A ring 
which is not semi-nilpotent is called semi-regular. Each semi-nilpotent 
ring is evidently a nil-ring. I t is an open question whether or not there 
exist semi-regular nil-rings. As may easily be seen, this problem is 
equivalent to the question whether or not there exist semi-regular 
nil-rings which are generated by a finite set of elements. 

Third problem. A nil-ideal P of a ring S has been termed by R. Baer 
[l , § l ] a radical ideal if the quotient-ring S/P does not contain nil-
potent ideals other than zero. The sum U(S) and the crosscut L(S) 
of all radical ideals of a ring 5 are again radical ideals which are called 
the upper radical and the lower radical respectively (see Baer [l , §1 ]). 
As indicated by Baer ideals may exist between U(S) and L(S) which 
are not radical ideals. R. Baer has also constructed an interesting 
example which illustrates this possibility. Our results in the present 
note show that this phenomenon can not be considered as an excep­
tion to the rule but on the contrary rather as the rule itself, and thus 
the following problem presents itself : Are there or are there not rings 
S in which U(S)'Z>L(S) and in which furthermore each ideal which 
lies between U(S) and L(S) is also a radical ideal? 

In the present note the following results are obtained: Suppose 
that S is a ring in which the iC-radical does not exist, then S contains 
an infinite number of right ideals as well as of left ideals which are 
semi-regular nil-rings (see Theorem 4 in §3). Suppose that S is a ring 
with a semi-regular upper radical Z7(5), then 5 contains a subring S' 
so tha t E/(S)3S" = U(S')DL(S') and so that S' contains an infinite 

Received by the editors April 3, 1945. 
1 We shall write henceforth in short ideals instead of two-sided ideals. 
2 Numbers in brackets refer to the Bibliography at the end of the paper. 
3 For the sake of convenience we shall reserve in this paper the term radical for 

the sum of all semi-nilpotent ideals of the ring (see [3, §2]). 
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number of ideals between U(S') and L(S') which are not radical 
ideals (see Theorem 5 in §3). If S is a ring with a semi-nilpotent 
upper radical U(S), and if U(S)Z)L(S)1 then 5 contains an infinite 
number of ideals between U(S) and L(S) which are not radical ideals 
(see Theorem 6 in §3). 

Remarks. From Theorem 4 it follows that if the first problem is 
answered in the affirmative then this will apply also to the second 
problem. From Theorem 5 it follows that if the second problem is 
answered in the negative then this will also apply to the third prob­
lem. The above-mentioned example of R. Baer is of a nil-ring U of 
which it can be easily proved that it is semi-nilpotent. In fact, the 
proof for the semi-nilpotency of U is implicitly contained in Baer's 
proof for the nillity of U (see [l , §2]). Thus our Theorem 6 explains 
the phenomenon which was described by Baer in his example. This 
theorem in conjunction with Theorem 5 seems to justify the conjec­
ture that the answer to the third problem is in the negative. 

Notations. If the ring T is generated by the finite set of elements 
ht hy • • • , tni then we write 7"= {h, h, • • • , tn} or T= { • • • , 
ti, - • • }. The sum4 of a finite number of right ideals (left ideals) 
Au Ai, • • - , An will be denoted by Ai+A%+ • • • +An— X*-i^*« 

The ideal, the right ideal and the left ideal in the ring 5 which are 
generated by a finite set of elements au a%, • • • , an will be denoted by 
(au #2, • • • , an), (au a2, • • • , an)r and (au a2, • • • , an)t respectively. 

If A = (au Ö2, • • • , an)r, then A 3 23?.ia<5. In case A = X X î0*^ w e 

say that A possesses a proper right basis. Similarly a proper left 
basis is defined. 

If A = (au Ö2, • • • >an)>then A^^y^S-aiS. In c&se A =^?amiSaiS 
we say that A possesses the proper basis au a$, • • • , an. 

If the ring 5 has an identity element, then all bases are of course 
proper bases. 

2. On nil-ideals with proper bases. In this section we shall derive 
certain properties of nil-ideals with proper bases which will be used 
in §3 for the proof of the assertions made in the introduction. 

THEOREM 1. If Ris a nonzero nil-ideal with a proper right basis in a 
ring S, then R2CR-

PROOF. By assumption we may put R= X)?-!0»»^» where a^R, 
i = l, • • • , n. Since further SaiSQR, we have ^ = 1 ^ . 1 ^ 5 
£= XXia*'^£=^2> a n d hence i? 2 = X)?-ia»^« Now suppose that 
R2(£R, then by R2QR we would have R2 = R, that is, 

We shall not use direct sums in this paper. 
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n 

(i) R « E « A «< e *, * - i, • • •. ». 

In case w = l w e obtain R = aiR, which by successive left multiplica­
tion yields R = a\R for each ky that is, aJ^O for each k> which is a 
contradiction to the nillity of JR. NOW suppose that n ^ 2 and define w 
so that 

w m—1 

(2) R = X) «A * 3 Z **R, 2 ^ m g ». 

By putting T— ^fZ\aiR we then have 

(3) JK = T + amR, am 5* 0. 

By (3) it follows that am can be represented in the form 

(4) am = h + amc, h G T, c G R. 

Now suppose that for a certain r it has been proved that am = &r+#mcr, 
brÇîT, then by (4) this would yield aw = & r+(6i+amc)c r = 6r+1+ömCr+1, 
where br+i = br-+-bicr. In view of the fact that T is a right ideal, it 
follows that &r+iE2"\ and thus by induction we have proved that for 
each 5 the element am has a representation of the form 

(5) am = b8 + amc\ bt G T, c G R. 

Now take for 5 the index of the nilpotent element c, then c* = 0, and 
we have am = bsÇ:Ty and hence amRQTt or R= ^ . " / a ^ , which is a 
contradiction to (2). Consequently equation (1) is impossible, which 
implies that R2(ZR-

THEOREM 2. If Ris a nonzero semi-nilpotent right ideal with a proper 
right basis in a ring S, then R2QR. 

PROOF. For a certain integer n we have by assumption R = X)?-iat-5 
with a^R, i = l1 - - • , n. Now denote by N the radical3 of »S, then 
RQN, and Sa{SQN (see [3, §2]). Hence we have R2 = J^iaiSakS 
Q^^iaiN. Now suppose that R2(£R, then we would have 
R2 = R, that is, RQ JX^diNQR, or 

n 

(6) R = 2 ^ > a< E .R, i =* 1, • • • , w. 

From (6) follows 
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(7) ai = ]T) akbik, bik G N, i, k = 1, • • • , ». 
fc~l 

By considering the ring B = { • • • , &a, • • • }, we have in view of (7) 
the r e l a t ion^ G XX.ia*B,i==l, • • • , », which by right multiplication 
yields a{BQ ^C ï - i 0 ^ 2 » ^ = 1, * * • , w, and hence a*G 2*-ia*-^2» 
i = l, • • • , ». Thus by successive right multiplication we obtain for 
each m 

n 

(8) ö i G ^ akB
m, i = 1, • • • , », 

fc=»i 

which implies that Bm9£0 for each m. But this is a contradiction, 
since N is semi-nilpotent, BÇ2N, and J3 is generated by a finite set of 
elements. 

Remark. Each nil-ideal of a ring S is contained in the upper radical 
U(S) of 5 . Only a slight modification of the proof of Theorem 1 is 
necessary in order to extend the validity of that theorem to one-sided 
ideals of S which are contained in U(S). In this generalized form, 
Theorem 1 would include Theorem 2 as a special case, since each 
semi-nilpotent one-sided ideal lies in the radical3 N of 5, which in 
turn is a subset of the upper radical. 

THEOREM 3. If Ris a nonzero semi-nilpotent ideal with a proper basis 
in S, then R2CR. 

PROOF. For a certain integer n we have by assumption 
R~ XXiSa tS , aiÇiR, i~l, • • • , ». If, again, N denotes the radical3 

of S, then SaiSQN for each i, and hence we have SaiSSakSSa3-S 
QNajcN for any triple of indices i, j , k. Thus it follows that 
# 3 = JOUj-iSaiSSatSSajSQ J^^NauN. Now suppose that R2<tRf 

then we would have R2 = R, and hence also i?3 = jR, which by 
R = RZQ Jjt.iNahNQR implies 

(9) R = £ NakN, ak G R, k « 1, • • • , ». 
&-i 

By (9) it follows that each ak has the form 

n 

(10) ak = X) baaien, bki G iV, CK G iV, *, * = 1, • • • , ». 

Putt ing JB = { • • • , &a, • • • } and C = { • • • , Ca, • • • } we can write 
(10) in the form akÇz X^- i -^ 0 ^» fe = l , • • • , », which by successive 
right and left multiplication yields 
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(11) ak G Ê B"o£», k - 1, • • • , ». 
*'—1 

By (11) it follows that Bm^0, O ^ O for each m, which is a contra­
diction to the semi-nilpotency of N. 

3. Proof of statements made in the introduction. The proof of 
the following Theorem 4 follows directly from the author's results in 
[3, §2], while Theorems 5 and 6 are based on our results in §2. 

THEOREM 4. If S is a ring in which the K-radical does not exist, then 
S contains an infinite number of right ideals as well as of left ideals which 
are semi-regular nil-rings. 

PROOF. First note that 5 contains right nil-ideals as well as left 
nil-ideals which are not in the upper radical U(S) of S. Indeed, by 
assumption S contains a one-sided nil-ideal A so that A <£ U(S). Now 
define the element a so that aÇ^A but a(£ U(S), then the right ideal 
{a)r and the left ideal (a)i are nil-ideals which are not in U(S). Now 
denote by R any right nil-ideal so that R(£ U(S), then also R2(£ U(S), 
since U(S) is a radical ideal. Consequently R contains an element #i 
so that ai2?(t U(S). By a±RQR and by the nillity of R follows easily 
RZ)aiR. Now put R! = aiR; then in view of 2?i(|I U(S) we may repeat 
with Ri the same procedure, and thus by induction obtain an infinite 
sequence of right nil-ideals Ri, R2, Rz, • • • , each satisfying the rela­
tion i?i(£ U(S). Now each semi-nilpotent right ideal of S is contained 
in the radical3 N of 5 (see [3, §2]) which is a subset of U(S). This 
implies that the right ideals of the sequence Ri, R2, • • • are semi-
regular; since a similar result holds for left ideals, the proof of our 
theorem is thus completed. 

LEMMA 1. If T is a ring with a finite set of generators, then for each 
positive integer n also Tn is a ring with a finite number of generators. 

PROOF. Write T= { #i, #2, • • • , am}, and put bilti%t..,tin+h 

= ai1ai2 - • • ain+k, where 0^k<n and l'èijSm for j = l, • • • , n+k; 
then, as may easily be seen, Tn= { • • , biltit,..-,in+k, • • • }, q.e.d. 

LEMMA 2. If T is a semi-regular nil-ring with a finite set of generators, 
then TnZ)Tn+l for each positive integer n. 

PROOF. By Lemma 1 we may put Tn — \bi, 62, - • • , br}. Now sup­
pose that Tn = Tn+1, then by successive multiplication follows 
Tn~Tn+m for each m, and hence by putting Tn= W we have W= W* 
for each k. In view of W= {bi, • • • , br} it follows easily that 
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W2= ^2ri^ibiW=Wf which is a contradiction to Theorem 1. 

LEMMA 3. If P and Q are nil-ideals of a ring S and if P 2 Ö , then P 
is a radical ideal if and only if P/Q is a radical ideal in the ring S/Q. 
In particular y Q is a radical ideal if and only if the zero ideal is a 
radical ideal in S/Q. 

PROOF. Denote by A a two-sided ideal of 5 so that A 2 P , then 
by the so-called "second law of isomorphisms" (see [4, p. 149]) we 
have (A/Q)/(P/Q)^A/P. Our lemma follows from the fact that 
A/P is nilpotent if and only if (A/Q)/(P/Q) is nilpotent. 

LEMMA 4. If the lower radical of a ring S is zero and if the upper 
radical U(S) is semi-regular, then S contains a subring T so that 
U(S)'0>T= U(T)~Z)L(T) and T contains an infinite number of ideals 
between U(T) and L(T) which are not radical ideals. 

PROOF. By assumption U(S) contains a finite set of elements 
0i, 02, • • • , CLn so that the ring T= {au 02, • • • , 0*»} is a semi-regular 
nil-ring. In view of the semi-regularity of U(T) and the semi-
nilpotency of the lower radical5 it follows that T~ U(T)'2)L{T)1 and 
that also the quotient-ring W=T/L(T) is a semi-regular nil-ring. If 
now bi denotes the image of 0» in the homomorphism T~W, we may 
evidently write W= {61,62, • • • ,bn}. By Lemma 2 wehaveWm+rCWm 

for any pair of positive integers ra, r, that is, the nonzero ideal 
Wm/Wm+r of the ring T/Wm+r is nilpotent. Consequently, Wm+r is 
not a radical ideal of W. Now define for each positive integer r the 
ideal Ar of T by the relations Ar^L(T), Ar/L(T)^Wr

t then Ar is 
uniquely determined, and in view of Lemma 3 none of the ideals of 
the infinite sequence A*, A$, • • • is a radical ideal, q.e.d. 

LEMMA 5. If the lower radical of a ring S is zero and if A is a nonzero 
semi-nilpotent ideal of S, then S contains an infinite number of ideals 
which are not radical ideals and which are subsets of A. 

PROOF. Denote by 01, 02, • • • , an an arbitrary finite set of nonzero 
elements of A and consider the nonzero ideal A\ = (01, 02, • • • , an) of 
5 which lies in A. As may easily be verified, we then have 
A\= ^i^iAiüiAi. Now suppose that A\=Aif then we would have 
Ai= X X i ^ i a ^ i £ S î - i ^ S C i l ! , that is, Ax= 2 j«i5a<5, which is 
a contradiction to Theorem 3 in §2. Hence we have A\C.Ai, which 
implies that the ideal A\/A\ of the ring S/A\ is nilpotent, that is, 

5 The lower radical is semi-nilpotent since it is a subset of the radical N (see 
footnote 2). 
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Bi~A\ is not a radical ideal. By L(S) = 0 it follows that J 3 O 0 . Since 
OQBiQA, we may repeat with B\ the same procedure, and thus (by 
induction) obtain an infinite sequence of semi-nilpotent ideals 
BiZ)B{DBzZ^ ' ' • none of which is a radical ideal, q.e.d. 

THEOREM 5. If S is a ring with a semi-regular upper radical U(S), 
then S contains a subring Sf so that U(S)^DS'= UiS^'DLiS') and so 
that S ' contains an infinite number of ideals between U(S') and L(S') 
which are not radical ideals. 

PROOF. By Lemma 3 (see also Baer [l , p. 539]) the lower radical 
of S* = S/L(S) is zero, while the upper radical U(S)/L(S) = U(S*) of 
S* in virtue of the semi-regularity of U(S) and of the semi-nilpotency6 

of L(S) is also semi-regular. Hence by Lemma 4 the ring S* contains a 
subring T so that U(S*)^>T*= U(T)DL(T) and so that S* contains 
an infinite number of ideals Af, A$, • • • between U(T) and L(T) 
which are not radical ideals. Now define a subring S' of 5 so that 
S'0>L(S) and S'/L(S)££T. By Lemma 3 it follows then that 5 ' has 
the required properties. 

THEOREM 6. If S is a ring with a semi-nilpotent upper radical U(S), 
and if U(S)Z)L(S), then S contains an infinite number of ideals be­
tween U(S) and L(S) which are not radical ideals. 

PROOF. Since by Lemma 3 the lower radical of the ring S* = S/L(S) 
is zero, it follows by Lemma 5 that the nonzero semi-nilpotent ideal 
U(S)/L(S) of S* contains an infinite number of ideals which are not 
radical ideals. Our theorem follows now as a consequence of Lemma 3. 
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