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H. J. STEWART 

Introduction. The motion of the atmosphere can be considered as 
a mean flow which has a very large scale and is only slowly changed 
and, superimposed on this, the low level, smaller scale phenomena 
usually associated with the polar front. If the mean pressures over a 
period of about a week are plotted, it is seen that the latter disturb­
ances are averaged out and only the large scale mean motion is 
shown. Such a plot of the northern hemisphere shows, in addition to 
the mean westerly flow of air, large scale closed isobaric systems spaced 
at comparatively regular intervals over the surface of the earth. These 
include the Aleutian and Icelandic low pressure areas to the north of 
the westerlies and the Pacific and Bermuda high pressure areas to the 
south of the westerlies. 

It has been noticed that the position and strength of these systems 
control the paths of the low level storms. This fact has been used in 
the development of a long range forecasting technique which has 
proved to be very successful for periods as long as three months. A 
knowledge of the properties of these large scale systems is thus not 
only of academic interest but of considerable value in the develop­
ment of long range forecasting techniques. 

In the investigation of these large scale transverse motions in the 
atmosphere, two controlling factors have been suggested and dis­
cussed by the author [ l ] and by Rossby [2] and Haurwitz [3]. These 
are first, the dynamical instability of the shearing motion on either 
side of the belt of westerly winds and second, certain forced oscilla­
tions in the atmosphere. The first of these and several related prob­
lems are discussed here. 

In making these calculations several approximations are made. The 
principal ones and the reasons for their adoption are as follows : 

(1) As the systems are very deep, that is, the wind momentum 
vector for a vertical section is roughly constant, it was felt that the 
horizontal field of motion was the dominant factor; consequently, 
vertical velocities are neglected; and horizontal momentum is as­
sumed not to vary with height. 

An address delivered before the meeting of the Society in Stanford University, 
Calif., April 5, 1941, by invitation of the Program Committee; received by the editors 
August 24, 1942. 
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(2) With this dynamical setup, the effect of variation of density 
with altitude would probably be small ; consequently the atmosphere 
is treated as a layer of fluid of constant density with the depth being 
determined by the hydrostatic law. 

(3) All frictional effects are neglected. 
(4) In most of these calculations it is assumed that the fluid can 

be considered as being on a rotating disc rather than on a rotating 
sphere. As on the earth, the gravitational field is assumed to be de­
formed by an amount large enough to cancel out the centrifugal ac­
celeration acting on a particle which is stationary with respect to the 
rotating disc or sphere. 

In the analysis the following notation is used: 
x, y = rectangular coordinates on a rotating disc, 
r, 0 = polar coordinates on a rotating disc, 

u= velocity in the x direction, 
v = velocity in the y direction, 

z>0 = velocity in the tangential direction, 
h = depth of fluid layer, 
w = angular velocity of the disc, 
g = acceleration due to gravity. 

The fundamental relations. Using the assumptions discussed in the 
preceding section, the equations determining the fluid motion on a 
rotating disc (see [4, p . 317]) are, fora Cartesian coordinate system, 
the dynamical equations, 

Du dh 
(1) 2co.= - £ -

Dt dx 
and 

Dv dh 
(2) h 2o)U «* — g — ; 

Dt By 
and the equation of continuity, 

Dh (du dv 
+h<— + — 

Dt {dx dy 

~„ (du dv) 
(3) ^+ Jte+ i;}-0 
where D{ )/Dt is the derivative following the fluid particle. If h is 
eliminated from (1) and (2) by cross-differentiation, the result may be 
combined with (3) to obtain 
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where 

dv du 
(5) f = 

ox ay 

This is the law of conservation of vorticity and could just as well have 
been taken as one of the fundamental equations. If the motion of the 
fluid could have been started from rest with a uniform depth, ho, the 
last equation can be integrated and the result obtained tha t 

f + 2o> 2œ 
(6) — 

ho 

hphHr 

d? hgpime] \fa{h*r+~(k*r)dr}de 

igpWdr 

FIG. 1 
Diagram of forces for flow in circles 

As the dynamical equations are nonlinear, general solutions to 
these expressions are not readily found; however, the solution for the 
case of steady motion in circles can be obtained quite easily. The 
equilibrium of forces in the radial direction (see Figure 1) requires 
that 

(7) (l/2)gr — (h2) = hvl + 2œrhvB. 
dr 

From (6), 

(8) h = ho{ 1 + r/2«} = hJl + — — (rve) [ . 
I zcor dr J 

The equation which determines the velocity is thus 

dh$ 1 dv$ (4co2 1 ) 2w 2 

• ve. 
dhe 1 dve (4co2 1 ) 

(9) — + \ + —>* = 
dr2 r dr Kgho r2) 

ghor 
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This can be put into a somewhat simpler form by using the dimension-
less variables, p = 2cor/(gfe0)

1/2 and Vd^ve/(gh0)
112. With these vari­

ables, (9) becomes 

dw9 £ <m _ ( n _ j^ i 
dp2 p dp I p2j p 

The desired solutions of this equation are those which vanish at in­
finity and thus correspond to vortex motion. If Ve is positive, this 
is the equation for cyclonic rotation; if Ve is negative, this is the 
equation for anticyclonic rotation. These solutions were found 
numerically at the Massachusetts Institute of Technology by means 
of the Differential Analyzer. These results are plotted in Figure 2 
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Velocity profiles for vortices 

together with Ki(p) which they approach asymptotically. These re­
sults were calculated from this asymptotic solution and thus can be 
expected to diverge more and more from the true solutions as p de­
creases. From physical considerations it appears improbable tha t the 
anticyclonic solution should have the velocity approach negative in­
finity a t the origin. There exists a solution which is finite at the origin 
and which has a series expansion which starts as follows: 

( 1 + a (l + a)(l + 2a) ) 
(11) Ve « a | p + — , » + * i L % s + . . . y 

I t seems probable that the anticyclonic solution must start out this 
way for some particular value of a, but this conjecture has not been 
verified. 
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An approximate solution to this same problem may be found by 
linearizing the quadratic terms of (1), (2), and (3), tha t is, by re­
placing D{ )/Dt by d( )/dt. If the linearized equations are solved for 
h, it is seen tha t 

d2h (d2h d2h) 
<12) ^-*fc + vr + 4 "' < 4 " w "°-
In terms of dimensionless variables X ~2o)x/(gho)112, F*=2üry/(gft0)

1/2 

and 77 = (h — ho)/hoj this equation becomes 

d2rj ( d2rj d2rj ) 
(13) — - \ - + -} + 17 = 0. 

dt2 \dX2 dY2) 
The only steady state solution to this equation which vanishes at 
infinity and which represents flow in circles about the origin is 

(14) v « AKo(p) 

where ps={X2+Y2)112 is the same as in (10), A is an arbitrary con­
stant, and K0(p) is a modified Bessel function of the second type 
[5, p . 21]. From (1), it is seen tha t 

v$ drj 
(15) V$ * = — = - AKx{p). 

(g*o)l/1 dp 
This is plotted for a unit cyclone, A = — 1, in Figure 2 together with 
the exact solutions which retained the quadratic terms. From (15) it 
can be seen that if p<3Cl, the velocity varies inversely as the radius, 
just as in an ordinary line vortex in an incompressible nonviscous 
fluid, and if distances between the vortices of (14) are small, results 
identical to those found with ordinary vortices will be obtained. 
However, the linearization of the equations of motion breaks down 
in this range ; so that results obtained with ordinary vortices cannot 
be applied directly. 

If ho is taken as being the depth of the homogeneous atmosphere, 
about 8 km, a distance of about 2,000 km corresponds to p = l . Fig­
ure 2 or (10) shows tha t at distances as large as this, the error caused 
by neglecting the quadratic terms is not large. As the spacing of the 
pressure centers being investigated is of the order of 2,000 km, the 
quadratic terms will be neglected throughout, and the linearized form, 
(13), will be used. In addition to this, the motions will be considered 
to be either stationary or changing very slowly so tha t the local ac­
celeration can be neglected as compared to the Coriolis term. This is 
equivalent to saying tha t the fluid motions to be considered can be 



786 H. J. STEWART [November 

built up through superposition of vortices of the type given by (14). 
With these approximations, (1) and (2) can be written as follows us­
ing dimensionless velocities U~u/(gho)112 and V = v/(gho)112: 

drj 
V « — , 

dX 
(16) 

dY 

These are the well known geostrophic wind equations. 
I t is of interest to note tha t (13) is the same as the equation for the 

deflection of a membrane which is elastically supported. The char­
acter of its solutions may often be estimated by use of this analogy. 

o o o-o o o 
1—/—I 

FIG. 3 
Single row of vortices 

Stability of rows of vortices. The most noticeable feature of the 
general circulation of the atmosphere is the belt of westerly winds. 
On both sides of the westerlies where the wind intensity diminishes 
rapidly there is a region of concentrated vorticity, cyclonic to the 
north and anticyclonic to the south of the westerlies. As a first ap­
proximation to this, the westerlies may be considered as a uniform 
jet with stationary air masses on either side. Separating the station­
ary and moving air masses are vortex sheets. That such vortex sheets 
are unstable has been shown by Pekeris and others. When an unstable 
vortex sheet breaks up into discrete eddies, the vorticity may either 
diffuse throughout the fluid mass or, if there is a stable vortex forma­
tion, the vorticity may collect in a definite pattern. As an example of 
this type of motion, the vortex sheets shed from a two-dimensional 
bluff body break down and then form the well known Kârmân 
"vortex street." 

A vortex sheet such as bounds the jet of westerlies can break up 
into only one system which is in equilibrium. This is a row of equal 
vortices equally spaced as in Figure 3. In terms of the dimensionless 
variables introduced in the preceding section, the surface deflection 
for such a system of vortices of unit strength is, by (14), 
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(17) v = £ Ko[(x - niy + y»]"*. 
ft as—OQ 

If the nth vortex is displaced by amounts Axn and Ayrt in the x and 
y directions, respectively, the surface deflection in the displaced posi­
tion is 

(18) r> = £ K0[(x - n l - Axny + (y- Ayw)2]1/2. 

The velocity of a vortex is the sum of the velocities induced by all the 
other vortices. By (16), the velocity of the vortex at the origin is 

— (A*0) = i,'K0[(x - n l - Axny + (y - Ay»)2]1'2, 
dt by „ 
rf r) °° 

— (Ay0) = — £ ' £ „ [ ( * -nl- Axn)* + (y - Ay*)2]1'2 

dt ÔX w«-oo 

where x and y are to be replaced by Ax0 and Ay0, respectively, after 
the differentiation has been performed. The ( ) ' on the summation 
sign indicates that the term for n = 0 is to be omitted. If the displace­
ments are small, these expressions can be written as 

d ™,Kx\nl\ 
— (A*o) = JL i 7i (Ay* - Ay0), 

(20) * ~ N l 

— (Ayo) = E l - T ^ T T 1 +Ko\nl\\(Axn - Ax*), 
dt n^oo I I nl J ) 

Similar expressions for the velocities of the other vortices could be 
written by symmetry. These form a set of simultaneous differential 
equations which must be solved in order to determine the motion of 
the vortices. 

As the equations for the infinitesimal displacements are linear, any 
arbitrary perturbation can be represented as a sum of terms of the 
type Axn=Ax0e

in,t> and Ay n= Ay0e
in* where 0^<£^27r, and the indi­

vidual harmonics can be investigated separately. From this, 

d - Kx{nl) 
— (Ax0) = ~ 2Ayo2^ :— (1 — cos #tf>), 

(21) * ^ nl 

— (Ay0) = - 2A*oZ \—-— + Ko(nl)}(l - cos»*). 
dt „=i I nl ) 

If these two equations are combined, it is seen that 
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(22) 

H. J. S' 

d? 
— (A*„) 

d* 
- ( A , o ) 

rEWART 

- X2A*0 = 0, 

- X2A^o =» 0 

where 

(23) 

\* « 4^ £ — — (1 - cos n<f>) > 

' { Z [ ^ p + *°W)] (1 - cos n*)l . 

From (22) it is seen that any infinitesimal disturbance will grow in 

O O T)Q~ O O—r 

O O O-^O ^"à1 

O O O O O 0 T 

o o i - * o <5~'~Ô̂  
FIG. 4 

Double rows of vortices 

amplitude unless X2<0; however from (23) it is evident that X2 is 
never negative. A single row of vortices is thus unstable. 

As there are two shear regions in the northern hemisphere, cyclonic 
shear to the north of the westerlies and anticyclonic shear to the 
south, it is possible that a double row of vortices arising from these 
might be stable. As shown in Figure 4, there are two possible arrange­
ments of equal and opposite vortices which do not change shape with 
time. 

The stability of the symmetrical system will be investigated first. 
If Axn and Ayn are the displacements of the nth vortex in the upper 
row and Axn and Ayn are the displacements of the nth vortex in the 
lower row, the surface deflection is given by 

/ 0 / l , * - £ {*o[(* - frf - Axny + (y - Ayny}^ 
(24) n^oo 

- K0[(x -nl- A~x«Y +(y-d-~ Â}n)2]1/2}. 
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From this expression the velocities of the vortices can be obtained 
in the same manner as in the preceding calculation. By writing 
Axn=Ax<iein+, Ayn=Ay<>ein+ ~Axn=^xtfin+ and ~Ayn~Ayoein+ as before, 
the velocity of the zero vortex in the lower row is seen to be 

d _ _ 
— (A#o) == AAyo + BAXQ + CAy0, 
dt 

(25) 
a 

— (Ay0) = D&xa — BAya + EAx<> 
dt 

where 

A- - K„(d) — - 2j^\—^-!- (1 - cos «<*>) 

„2/2 + d2 V" - ' [„2/2 + rf2]S/2 ƒ » 

Zi n2l2 + d2\ [n'P + d*]1'1 ƒ 

— (nH2 - d2) 
nH2 + d2 

nld sin tul>( K^nH2 + d2]112 

[n*P + d2]1 

KM - ( K0[nH2 + d2]1'2 

(26) C = K0(d) + - ^ - + 2X,U2 2{ 
n = l V 

00 00 

J9 - il - 2]C *oW)( l - cos n4>) + Z ifo[»V + d*}"\ 

£ = C - ifo(d) - 2 X) # o | y / 2 + d2]1 '2 cos n<t>. 

From symmetry the equations for the motion of the zero vortex in 
the upper row can be written as 

d — x — 
— (Affo) = — AAyo + BAxo — CAy0, 
dt 

(27) 
— (Ay0) = — #A#o — ^A^o — -EA#0. dt 

I t may be noticed that the second pair of equations is identical to 
the first in either of two cases, first if A#0=A#o and Ay0= — AyQ and 
second if Ax0~ — Â#o and Ay0=A3/o. The first case corresponds to 
symmetrical perturbations with respect to the center line and the 
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second case corresponds to antisymmetrical perturbations. In order 
for the system to be stable, both types of motion must be stable. 

(28) Cj - B\AX0 » (A - QAyo, ( B^Ayo = (D + E)Ax0 

for the symmetrical case. As B is an imaginary quantity, the condi­
tion for stability in this case is that 

(29) (A -C)(D + E) S 0. 

For the antisymmetrical perturbations the corresponding stability 
condition is that 

(30) {A + C)(D - E) é 0. 

For the special case where <j> = w it is easily seen that the first of these 
is violated, for from (26) both (A— C) and (D+E) are negative. 
From this, it follows that the symmetrical vortex system of Figure 4 
is unstable. 

For the asymmetrical system of Figure 4 it is found by a similar 
procedure that (25) and (27) and thus (29) and (30) hold if 

4 » _ 2 ] £ — — (1 - cos n<t>) 

• ((» + 1/2)2Z* - d2 & \ 

" (n + 1/2)W ( Ki(Rn) ) 
B = 2*"£ " T - y - " - - + JSTo(i2») \ sin (n + 1/2)0, 

- ( d2 (» + 1/2)2/2 - <Z2 Ï 

•cos (n+ 1/2)0, 
00 00 

D = A - 2j^K0(nl)(l - cos **) + 2 £ tfoCR»), 

00 

£ « C - 2 X JPOCR») cos (n + 1/2)0, 

where jRn= [(w + l /2 ) 2 / 2 +d 2 ] I / 2 . For 0 = 7r, the critical case for stabil­
ity, C = £ = 0. The stability criterion thus becomes A(ir)D(ir)~0. 
From (31) it is apparent that this condition will be satisfied for a 
given value of I for a range of values of d between the limits which 
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correspond respectively to -4(7r) = 0 and D(7r) = 0. These limits are 
given in Table 1 and are shown graphically in Figure 5. I t should be 

Unstable ^^ 
x^~~^\ Stable 

~—~~,—" ' ' l 

I Unstable 

FIG. 5 
Stability diagram for double vortex rows 

TABLE 1 

Stable range of values for d/l for asymmetric vortex street 

I Upper limit Lower limit 

0 0.281 0.281 
1 0.300 0.281 
2 0.350 0.280 

noted that for small values of Z, the result tha t i / / = 0.281 is exactly 
tha t obtained by Kârmân in his work with vortex streets behind 
two-dimensional bluff bodies (see [4, p. 228]). 

This calculation shows tha t stable configurations do exist. These 
results would be directly applicable to motions in the earth's atmos­
phere if the width of the vortex street were small compared to the 
radius of the earth. Unfortunately, this is not so, and the curvature 
of the shear fields on the edges of the westerlies must be considered. 
These effects will be considered in the next section. 

Stability of rings of vortices. The analysis of the stability of a 
double ring system of vortices, the system one would use to represent 
the vortex pattern accompanying the belt of westerly winds, is un­
fortunately so complex that a successful solution has not yet been 
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carried out. The effects of the curvature on the stability of such sys­
tems can, however, be estimated from the investigation of the sta­
bility of a single ring of vortices. This corresponds to a condition 
where the shear field to the north of the westerlies is of negligible 
strength. As the shear field to the north of the westerlies is much 
weaker than that to the south, this single ring of anticyclonic vortices 
furnishes a much better picture of the atmospheric motions than the 
double row of equal vortices investigated in the preceding section. 

O O 

o —* o 

o o 
FIG. 6 

Ring system of vortices 

If the shear field north of the westerlies is neglected, a ring of 
equally strong anticyclones evenly spaced around a latitude circle is 
the only formation of vortices which will not change its shape with 
time. The stability of such a system can be investigated approxi­
mately by considering the stability of a ring of vortices of the 
type given by (14). If there are N such vortices in a ring of radius a, 
spaced at equal angles r = 27r/Ar, as shown in Figure 6, the surface 
deflection for such a system in its equilibrium state is 

N 

(32) v = J^ K0[a2 + r2 - 2ar cos (fl - nr)]l,i. 

For the calculation of the velocities of the system it is useful to 
know the form taken by (16) in polar coordinates. If vr and ve are the 
dimensionless velocities in the radial and tangential directions, re­
spectively, (16) can be written as 

(ÓÓ) Vr = y Ve = • 

r dB dr 

From the second of these, the system shown in Figure 6 is seen to 
have an angular velocity 0 given by 
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JV-l 
(34) Q - - ( l /a) J ) Kx[2a sin (»r/2)] sin ( » T / 2 ) . 

If the nth vortex is displaced by Arn in the radial direction and by 
an angle of A6n in the tangential direction, the surface deflection in the 
displaced condition is 

N 

(35) 7? = 53 K0[(a + Arn)
2 + r2 - 2(a + A r > cos (0 - »r - A0n)]l/2-

n«l 

If the displacements are small, the change in velocity from the equilib­
rium value given by (34) can be readily calculated. For the iVth 
vortex it is found that 

d N^} 
AvT = — (ArN) = ( 1 / 2 ) X ArnK0(Rn) sin nr 

at n - i 

+ Z a(AOn - A0N) <—~—^ + Ko(Rn) cos2 (nr/2) \ , 
n~l \ Rn ) 

(36) 

d 
Ave = a — (AON) + fiArjy 

= Afjy 53 ) Ko(Rn) sin2 (nr/2) cos #r > 

+ E Ar J - £ - ^ + K»(R^ sin2 (nr/2) \ 
n=l L \ -*̂ n / 

+ (l/2)aAdnKo(Rn) sin wr 

where i?n = 2a sin (nr/2). Similar expressions for the velocities of the 
other vortices could be written from symmetry. These would form a 
set of simultaneous differential equations for the displacements. 

If the N equations in each of the two sets indicated in (36) are 
added, it is seen that 

d 

dt 

d ( N } ( N \ 

(37) *{£*}-{5*-} 
• | Ê [2 sin2 (nr/2)Ko(Rn) + (I/o) sin (»T/2)KI(RJ]\ . 
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If the system is initially in equilibrium so that initially Afn^Aön^O, 
then (37) shows that 

N N 

(38) X>r n = 2>0 n = O. 
n*»l n»»l 

These results correspond to the similar equations for two-dimensional 
line vortices which state that the impulse of a system having no ex­
ternal forces remains constant (see [4, p. 220]). 

The method of harmonic analysis used in the preceding section 
can also be used to advantage in the solution of (36). If Arn=Arjyein* 
and AÖn=AÖ^<n* where 0 is a member of the series 2ir/Nt 47r/iV, • • • , 
(N~\)2ir/N, 2TT, then (36) can be written as 

(39) 

where 

(40) 

d 
— (Arjy) ^ AATN — BaAdif, 
dt 
d 

a — (A0N) = CArN + AaABx 
dt 

A = (1/2) D ein+ sin nrK0(Rn)t 
n=»i 

B = £ (1 - e*»*) \—i-1 + cos» (tir/2)Ko(Rn) \ , 
n=»l V Rn ) 

C = E {(1 + ein+) sin2 (nr/2)K0(Rn) 

KxiRn)) 
+ (1 - 2 cos nr + ein+) > . 

Rn ) 

Since A is a purely imaginary quantity for any of the specified 
values of #, the condition that the system be stable imposed by (39) 
is that 

(41) BC à 0. 

From (40) it may be seen that B is never negative and that C is 
always positive for iV = 2, 3, 4, 5, or 6. For iV = 7, C is positive if 
a > 71. For N > 7, C is always negative for one or more of the values of 
<t>. A value of a > 71 corresponds either to disturbances of such great 
wave length or to motions of such a shallow layer of air in the earth's 
atmosphere tha t it probably is of no significance. The results of this 
calculation may then be summarized by the statement that six or 
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less equal vortices placed at the corners of a regular polygon form a 
stable vortex formation. This result is in agreement with the work 
of J. J. Thomson who investigated the stability of similar formations 
of two-dimensional line vortices in a frictionless incompressible fluid 
(see [6, p . 94]). The effect of the curvature of the row of vortices is 
thus seen to be stabilizing providing the number of the vortices in 
the ring is small enough. 

As a single ring is stable, the effect of the shear field to the north 
of the westerlies can roughly be taken into account by placing a 
fixed vortex at the pole as in Figure 7. The effect of such a vortex is to 

O O 

o o—a o 

o o 
FIG. 7 

Ring system of vortices with polar cyclone 

change the rate of rotation of the system and to add additional turns 
to (40). If P is the ratio of polar (cyclonic) vorticity to the anti-
cyclonic vorticity, then (39) still holds if 

( K ( 
(42) C » C(P = 0) - NP\K0(a) + 2 — 

I a 

The fixed polar vortex is thus seen to cause a decrease in stability 
and if P is large enough the motion becomes unstable. As P is in­
creased from zero it is found that the maximum number of vortices 
which form a stable formation diminishes from six to five, to four, 
to three and then to zero. 

Vortex motion on a rotating sphere. All the calculations discussed 
in the preceding sections have neglected the effect of the variation of 
the Coriolis acceleration with latitude, that is, they correspond to 
conditions on a rotating disc rather than on a rotating sphere. In 
this section vortex motion in an atmosphere on a rotating sphere will 
be discussed. 

• 
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In terms of polar coordinates on a sphere rotating with an angular 
velocity co with 0 being the angle from the north pole and <j> being 
the longitudinal angle, the equation representing the conservation of 
angular momentum and corresponding to (4) is 

D Cf + 2w cos d\ 
(43) —\— Î = 0 

Dt\ h ) 
where f is the radial component of the curl of the velocity vector. If u 
is the velocity to the east and v is the velocity to the north, the 
expression for f is 

l i d dv) 
(44) f : — \ — (u sin 0) + —> . 

a sin 0 IdO d<j>) 
This principle will be used to investigate the velocity distribution 

which would accompany a vortex with its core at the north pole. For 
this case it is permissible to assume symmetry about the polar axis 
with v being zero in the steady state and u and h being functions only 
of 0. 

If the motion started from rest with the atmosphere having a uni­
form depth, ho, (43) can be integrated to give 

f + 2co cos $ 2w 
(45) = — cos 0o 

h ho 
where 0O is the colatitude at which the particle originated. As the 
mass of the fluid must be conserved, 

(46) J ho sin 0 dO = f 
Je J & 

From this, 

/

* h 
— sin 0 d$t 

j ho 

and the vorticity at any latitude is thus 

( h h r* h ) 
(48) f = 2co^ COS0 + — — s i n 0 M . 

\ ho ho J e ho ) 
The equation of motion is 

1 g dh 
(49) — cot Su2 + 2w cos du = ; 

a a dB 

h sin 0 dB. 
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and from (44) 

1 d 
(50) f - — — — (u sin 0). 

a sin 6 ad 

Equations (48), (49), and (50) must be solved simultaneously for u, 
h, and f. An exact solution is extremely difficult, but an approximate 
solution can be obtained if the centrifugal acceleration is neglected in 
(49) and if the depth of the atmosphere is only slightly different from 
the equilibrium value A0. 

If the centrifugal acceleration is neglected, these equations may be 
combined to give 

(51) i t a n f l — 1 = a2\ri cos 6+ (1 + rj) f r) sin 9 dB} 

sin e del dej I J§ ) 
where 

a2 = 4coV/(gAo) and v = (h - A0)/*o. 

Since rj is small compared to unity, (51) may be linearized by re­
placing the factor 1+rj by 1. If a new independent variable,/x = cos 0, 
is introduced, (51) can be then written in the form 

d* i 1 ~ ^ dv\ 2/ dv I _ 
dfx21 11 dix) I dp S 

This equation can be integrated once, and it then becomes 

d (1 ~ M2 dv) 
(53) M2 — \ -} - «V*? = C 

dfJi V M2 ^M/ 

where C is an arbitrary constant. This equation (with C = 0) is 
identical with an equation used in the development of the dynamical 
theory of the long period fortnightly and semiannual tides (see [4, p. 
334]). The desired solution of (53) is finite except for /* = 1 and satisfies 
the continuity principle; that is, 

/ : • 
t\d\i = 0. 

L 

For standard atmospheric conditions with the sea level pressure 
and density being 1013.3 mb and 1.276X103 gm/cc, respectively, 
the constant a2 has the value 10.9. The velocity distribution obtained 
from the solution of (53) for this value of a2 which satisfies the given 
boundary conditions is plotted in Figure 8 together with the cor-
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responding solution for the velocity distribution for a vortex on a 
rotating disc as given by (15). 

u 
(gho)"2 

0° 45° 90° 135° 180° 
0 

FIG. 8 
Velocity distribution for a polar vortex on a rotating sphere 

It would be desirable to extend these calculations to obtain the 
velocity distribution for a vortex arbitrarily placed on a sphere and 
to use this result to discuss the stability of vortex formations on a 
sphere. It may be seen from this calculation of the velocity field of a 
polar vortex that such an investigation would be very difficult to 
carry out satisfactorily. 

Concluding remarks. It has been shown that a ring of equal anti­
cyclones formed by the "rolling-up" of the shear field south of the 
westerlies is stable provided that the number of anticyclones is not 
more than six and that the shear field north of the westerlies is not 
strong. The most unsatisfactory feature of this dynamic picture is 
that if it were strictly true, the anticyclones would have a small 
velocity to the west; however it is apparent that the effect of the 
vorticity north of the westerlies would be to decrease this velocity. 
The "vortex street," for which the cyclonic and anticyclonic vortic-
ities are equal, has a velocity to the east; so that an analysis which 
properly took into account the relatively small amount of cyclonic 
vorticity to the north of the westerlies might be expected to show 
stable systems which are practically stationary. This is in rough agree­
ment with the idea that the position of such systems ought to be de­
termined primarily by thermodynamic considerations, so that the 
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stable vortex formations found in the atmosphere might be expected 
to be those that are stationary. 

Since the cyclonic vorticity does not normally show concentrations 
like the Pacific and the Azores anticyclones—the Aleutian and Ice­
landic lows apparently being surface phenomena caused by the 
passage of large numbers of low level-storms—the representation of 
the cyclonic vorticity by a single polar vortex is probably a fairly 
good approximation. As this vortex was seen to cause a decrease in 
the number of anticyclones that could form stable formations, the 
maximum number which can exist in the atmosphere is probably 
less than six with the most stable formation of three anticyclones 
being the most probable. There is about 120° of longitude separating 
the mean positions of the Pacific and the Azores highs, and there is 
some evidence of the existence of a similar system equally distant 
from these two over Asia, but this evidence is far from conclusive. 

These stability calculations were made with vortices on a rotating 
disc rather than on a rotating sphere, and the possibility of coupling 
between northern and southern hemispheric systems was neglected. 
I t is not possible to state "a priori" whether or not these modifica­
tions are important; however it is believed that their effect is not 
large. 
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