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JOHN M. H. OLMSTED 

The standard method of extending a system with an operation to 
a system with the operation and its inverse depends heavily on the 
law of cancellation: ab=ac implies b~c (possibly with some limita­
tion on a). The most familiar example is undoubtedly the extension 
of the integers to the rational numbers. If the law of cancellation 
fails, not only does the method fail, but the extension cannot be a 
group. However, one may ask whether some method of extension is 
available in certain cases where the cancellation law fails but is re­
placed by something else, for example an order relation. I t is the pur­
pose of this paper to present an extension of the system of cardinal 
numbers (the positive cardinals, excluding zero). This will be an ex­
tension of both the cardinal numbers and the positive rational num­
bers with respect to the operations of addition and multiplication and 
the relation of ordering. Furthermore, this extension is the smallest 
extension subject to certain conditions. We shall assume the axiom 
of choice in the form of the simple ordering of the cardinals. 

The means for obtaining the extension is suggested by a treatment 
of ratios by Eudoxus. (See for instance E. T. Bell, Development of 
mathematics, New York, 1940, p. 61.) 

We define first an equivalence relation between ordered pairs of 
cardinal numbers: (a, b)p(c, d) if and only if (1) a>b and c>d, or 
(2) a = bandc = d, or (3) a<bandc<d. 

In terms of the relation p we define the fundamental equivalence 
relation between ordered pairs of cardinal numbers : 

DEFINITION, (a, b)~(c, d) if and only if f or every pair of cardinal 
numbers, m and n, (ma, nb)p(mc, nd). 

The relation ^ is readily shown to be an equivalence relation. Be­
fore discussing the equivalence classes defined by this relation we shall 
state a theorem, assuming for the first two parts that (a\, &i)^(a2, b%). 

THEOREM. I. If ai and b± are finite so are a% and b%. II. If ai<bi 
and bi is infinite, then &i = &2. If a\>b\ and a\ is infinite, then a\ — a%. 
III. If ai<b, a2<b, and b is infinite, then (ai, b)~(a2, b). If a>b\, 
a > 6 2 , and a is infinite, then (a, bi)~(a, 62). IV. If (a, a)~(b, b) and a 
and b are infinite, then a = b. 
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As a sample proof we shall prove the first half of part I I . Choose 
m~biy n = l. Since biai = l-bi, therefore &IÖ2 = 1-&2. But a2<&2, and 
therefore 61 = ô2. 

Each equivalence class {(a, b)} defined by the relation ~ will be 
called a rational, and the entire set will be denoted by R. If a and &, 
for any equivalence class representative, are finite, the class will be 
called a finite rational) otherwise, a transfinite rational. We shall now 
define ordering and multiplication of rationals. In each case it is nec­
essary to show tha t the definition is independent of the representa­
tives chosen. The proofs for the two cases are similar, and only that 
for multiplication will be given. 

DEFINITION OF ORDERING. {(a, b)} ^ {(c, d)} if and only if for every 
pair of cardinal numbers, m and n, 

ma > nb implies mc > nd, ma = nb implies me è nd. 

Remarks. 1. The definition of ^ is independent of the equivalence 
class representatives. 2. If {(a, b)} = {(c, d)}, then {(a, b)} S {(c, d)}. 
3. If {(a, 6 ) } S { ( c , d)} and {(a, b)}^(c, d)}y then Ua, b)} 
= {(c, d)}. 4. {(a, b)}s{(c, d)} if and only if {(6, a)}^{(d, c)}. 
5. The relation < is defined in terms of ^ and = . 6. The rationals 
form a partially ordered system. 

DEFINITION OF MULTIPLICATION. {(a, b)} • {(c, d)} = {(ac, bd)}. 

Remarks. 1. (ai, &i)^(a2, ^2) implies (aie, bid)~{aic, b2d). [in order 
to show tha t (mai, nb\)p(ma2y nbz) implies (qaic, rb\d)p{qa2c, rb2d), 
let m=qc and n~rd.\ 2. (ai, &i)^(a2, ^2) and (ci, d i )^(c 2 , d2) imply 
(aiCi, W i ) ^ ^ ^ , W 2 ) . [(fliCi, &idi)~(a2Ci, b2di)r^{a2C2, W2).] 3. Multi­
plication is commutative and associative. 4. {(a, 6)} == {(ac, &c)} only 
if c is not too large. 

In order to imbed the cardinals in R we define the correspondence 
a<±{ (a, 1 )} . I t is readily shown that this correspondence is one-one, 
preserves ordering, and is isomorphic with respect to multiplication. 
Furthermore, the definitions of ordering and multiplication in the 
case of the finite rationals are equivalent to those normally given for 
rational numbers. The finite rational {(1, 1)} is a multiplicative unit 
for the entire system R. 

Adopting the notation a/b for {(a, b)}, letting ƒ represent any finite 
rational, and using x and y to represent any two transfinite cardinals 
where x<y, we can indicate the order structure of R by means of an 
abbreviated Hasse diagram : 
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The complete diagram would contain three sequences of transfinite 
rationals radiating from/. From the above diagram it can be seen that 
R is a non-modular lattice. I t might be noted tha t the product of 
any two rationals, not both finite, is represented on the diagram by 
the one which is farther to the right, unless the two are distinct and 
situated on a common vertical, in which case the product is the first 
element to the right of both. (One could obtain a new ordering by 
giving the complete Hasse diagram a quarter turn, the result being a 
distributive lattice where multiplication is identical with the lattice 
operation U . In this case it is to be understood that only one finite 
rational is included.) 

DEFINITION OF DIVISION. a/b-r-c/d=ad/bc. 

Since a / l - f -ö/ l = a/&, the notation A/B will be used for quotients 
of elements of R as well as for equivalence classes of pairs, without 
danger of confusion. Although many familiar laws involving division 
persist, let us observe that multiplication and division are not inverse 
operations in the usual sense. For example, a rational divided by it­
self is the unit element only if the rational is finite. 

The definition of addition which first comes to mind is a/b+c/d 
= (ad+bc)/bd, particularly since it can be shown that this is inde­
pendent of the representatives chosen. However, this possibility will 
be rejected for two reasons. In the first place, the expected distribu­
tive law fails, and secondly the corresponding formula for adding 
quotients of elements of R fails. A more satisfactory method is to 
impose certain requirements and prove that the resulting operation 
exists and is unique. To furnish a more concise arrangement of mate­
rial, a third method has been chosen which is equivalent to the sec­
ond. The definition will be given in a form which is apparently 
arbitrary, but it will be justified by properties given subsequently. 

DEFINITION OF ADDITION. A+B=A\JB unless A and B are both 
finite rationals, in which case the sum corresponds to the sum of the corre­
sponding rational numbers. 
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We now state and prove the principal theorem which enumerates 
properties of R and establishes its minimal character. 

THEOREM. The following conditions are satisfied by the system of ra-
tionals R. Furthermore, R can be imbedded isomorphically with respect 
to the operations of multiplication, addition, division, U', and C\ in any 
lattice L with operations of multiplication, addition, and division de­
fined, subject to the following conditions : I. L is an extension of the posi­
tive rational numbers and the cardinals with respect to addition, multi­
plication, division, and countable U and C\, wherever these are defined 
among the positive rational numbers and the cardinals. I I . Addition and 
multiplication are commutative and associative. The following distribu­
tive laws hold: multiplication over addition, over \J, and over C\\ ad­
dition over \J. I I I . There exists a unit I such that AI — A/I = A. IV. 
(A/B)(C/D) = (A/B)/(D/C)=AC/BD. V. A<B implies I/A>I/B. 
VI. KA <B implies A/B <I. VII . A SA +B. 

Proof that R actually has the properties claimed will be omitted, 
since there is no difficulty present. Proof of the distributive laws con­
sists of verification of all cases, but this is simplified by the partial 
equivalence between addition and W, and the duality between KJ and 
C\ where multiplication is involved. 

Assume now tha t L is a lattice with the given properties. The dis­
tributive laws for addition and multiplication over \J will be used in 
the forms: A<B implies A+CSB+C and AC SBC. For the sake 
of compactness the following notational conventions will be made: 
the letter F will denote an element of L corresponding to a positive 
rational number, P an element corresponding to a positive integer, 
and T, X, and Y elements corresponding to transfinite cardinals with 
the added assumption that X < Y. Proof that L is an extension of R 
is divided into four parts. 

I. Ordering. 1. By property I, P<T. 2. F<T, since F is less than 
some P. 3. By property V, I/Y<I/X <F<X <Y. 4. By property V 
and the fact that T/T is not a multiplicative unit, there can be no 
order relation between I and T/T. 5. By property VI, I< Y/X. Since 
multiplication is distributive over VJ, KY/XSY/I=Y. Assume 
I< Y/X<Y. Then by property VI, (Y/X)/Y= Y/Y<I. Since this 
is impossible, Y/X= Y. 6. Similarly, T/F = FT = T and F/T^I/T. 
7. By property V, there is no order relation between X/X and Y/ Y 
unless they are equal. Assume Y/Y = X/X. Then (Y/Y)(Y/X) 
= (X/X)(Y/X) or Y/Y= Y/X>I. This is impossible. 8. Similarly, 
there can be no order relation between X and Y/ Y, or between I/X 
and Y/Y. 9. I/T<T/T<T. In establishing these order relations be-
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tween quotients of certain pairs of elements of L, we have incidentally 
proved the more fundamental fact that the obvious imbedding corre­
spondence is one-one. For example, the distinct elements x/1, 1/y, 
and y/y of R correspond to distinct elements X> 1/ Y, and Y/ Y of L. 

II. Multiplication and division. Proof is trivial by property IV and 
by what has been proved in part I. 

III. Addition. A sample collection of pairs of quotients of ele­
ments of L will be chosen, and the sum of each pair determined. 
1. T^F+T^T+T. By property I, T+T=T, and therefore F+T 
= r . 2. By a distributive law, I/T+I/T=(I+I)/T=*F/T = I/T. 
More generally, any element of L corresponding to a transfinite ra­
tional is idempotent with respect to addition as well as multiplication, 
U, and Pi. 3. It follows from the inequalities T/Tgl/T+T/T 
^T/T+T/T = T/T that I/T+T/T = T/T. 4. Assume I = I+T/T. 
Multiplication by I/T gives I/T = I/T+T/T=T/T. This is false, 
and therefore, since I^I+T/T, KI+T/T. 5. Since KT and 
T/T<T, I+T/T^T+T=T. Assume KI+T/T<T. Then by 
property VI, (I/T)(I+T/T) < / , or I/T+T/T*=T/T<I. This is im­
possible, and therefore I+T/T=T. 6. F+T/T~F(I+T/T)=FT 
= T. 7. X/X+Y/Y=(X/X)(I+Y/Y) = (X/X){Y) = Y. 8. F+I/T 
^F+F', where F and F' correspond to arbitrary finite rationals. 
From property I, since Ç] [all finite rationals>ƒ] =ƒ, it follows that 
riF>[F+F'] exists and equals F. Therefore F^F+I/T^F, and 
F+I/T = F. 

IV. U and r\. In R countable KJ and C\ are trivial except where 
finite rationals are concerned, and the isomorphism proof in this case 
is a consequence of property I. Finite U and O cause no difficulty. 
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