SOME REMARKS ON EULER’'S ¢ FUNCTION AND
SOME RELATED PROBLEMS

PAUL ERDOS

The function ¢(#) is defined to be the number of integers relatively
prime to #, and ¢(n)=n-]]p.(1 —p~1).

In a previous paper! I proved the following results:

(1) The number of integers m < for which ¢(x) =m has a solution
is o(n[log n]<?) for every ¢>0.

(2) There exist infinitely many integers m <# such that the equa-
tion ¢(x) =m has more than m¢ solutions for some ¢>0.

In the present note we are going to prove that the number of in-
tegers m=n for which ¢(x)=m has a solution is greater than
cn(log n)~!log log n.

By the same method we could prove that the number of in-
tegers m=n for which ¢(x)=m has a solution is greater than
n(log n)~'(log log n)* for every k. The proof of the sharper result
follows the same lines, but is much more complicated. If we denote
by f(n) the number of integers m <# for which ¢(x) =m has a solu-
tion we have the inequalities

n(log #)~'(log log n)* < f(n) < n(log n)<.

By more complicated arguments the upper and lower limits could be
improved, but to determine the exact order of f(z) seems difficult.

Also Turdn and I proved some time ago that the number of in-
tegers m <n for which ¢ (m) =n is cn+o0(n). We shall give this proof,
and also discuss some related questions:

LEMMA 1. Let a<e, b<n, a #b, e=(log log n)~1%. Then the
number of solutions N,(a, b) of

ey (p—VDa=(—1b p=nat, ¢5nb,
b, q primes, does not exceed

(@, =n
2) (log log ).

ab  (log n)?

Proor. Put (a,b) =d. Then wehave p=1 mod bd—*. Also (p —1)abd~!
+1=gqis a prime. We can assume that both p and ¢ in (1) are greater
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than n'/2, for the exceptional values of p and ¢ give only 2n1/2 solu-
tions of (1). Let » <n? where 6= (log log #)~', be a prime. If p is a
solution of (1) it must satisfy the following conditions
= 1 mod b4}, p < nal,
p ¢ Omod 7, p # (= ba~!' 4+ 1) mod .

If 7 is not a divisor of a(a —b) the excluded two residues are different.
Thus we obtain by Brun's argument?

Na(a, b) < 2012 + cind(ab)* I @ — 2),
rIa(a—-b)
where 7 runs through the primes less than né,
Now it is well known that?
IT (=2 <(log 22, T (1 — 2r1) > ¢s(log log )2
rSz rlz

Hence

N.(a, b) < 2n''? + cund(ab)—*(log log n)**(log n)~?

< nd(ab)~'(log log n)*(log n)2,

which completes the proof.

LeEMMA 2.Y(p—1)~1< (log log 7)20d— if this sum is extended over all
p <n¢ for which p=1 mod d.

Clearly (summing over the indicated p)
2t S d Yy,
where the dash indicates that the summation is extended over the x
for which x <nd—!and xd+1 is a prime. Let y <nd™!; first we estimate
the number of thesex =y <#n. Let r <y® (§ = (log log #)~1%) be a prime;

if (r, d) =1then x ¥ —d—! mod r. Brun's method* gives that the num-
ber of these x <y is less than

ey II (1 = 7 < cy(log y)~(log log ¥)*° log log d,

where the product is extended over the » which satisfy r <43, (r,d) =1.
Thus a simple argument gives

> 'at < ¢ 3, (log log z)*(log log d)(z log 2)~! < (log log %),

2<n
which proves the lemma.

2 Landau, Vorlesungen iber Zahlentheorie, vol. 1, p. 71.
3 Hardy-Wright, Theory of numbers.
4 Landau, ibid.
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LEMMA 3. The number A(n) of integers m of the form m =pq, where
©)) bg S,
b, q primes, p >q, g <n*, equals
n(log log #n)(log 7)~! + o([n(log log n)(log n)~1]) = ms(n) + o(ma(n)).

REMARK. Thus the number of integers satisfying (3) is asymptoti-

cally equal to the number m2(%) of integers which are less than # and
have 2 prime factors.®

The number of integers satisfying (3) is clearly not less than
2 (nlng™) — m) = 3 ng~*(log (ng )~ — n*
+ 22 o(ng~ [log (ng™) ]
=n(log log #)(log #)~14o(n(log log #)(log #)™1)

(here w(n) denotes the number of primes, and the sums are taken over
g<n*), since > g '=log; n+log e+o(1) and log (ng~?) is asymptotic
to log # for g<n¢. (The sum Y _g~! is for ¢ <n*.)

THEOREM. The number f(n) of different integers m of the form
m=¢(pr) where p, r are primes and pr < n equals

n(log log n)(log #)~* + o(n(log log n)(log n)~!) = ma(n) + o(we(n)).
Denote by B(n) the number of solutions of (p—1)(r—1)
=(g—1)(s—1), where p, q, 7, s are primes, with pg, rs<n and
s, r <n¢. Clearly
f(n) 2 A(n) — B(n).
We have by Lemma 1 (the following sum being for r, s <n¢)
Bn) = >, Nu(r — 1,5 — 1)
< n(log log m)3(log n)~1>, (r — 1, s — 1)(r — 1)~(s — 1)1,
Put (r—1, s—1)=d. Then
B. < n(log n)~%(log log n)3 > > d(g — 1)~(s — 1),

where the first sum is for d <n¢ and the second for r=s=1 mod d,
with 7, s <n¢. By Lemma 2 we have, summing over the same 7 and s,

> (r — 1)~'(s — 1)1 < (log log n)4%d—2.

¥ Denote by mi(n) the number of integers having % different prime factors.
Landau proves (Verteilung der Primzahlen, vol. 1, pp. 208-213) that mx(n)
~(n/log n)(log log n)¥1/(k—1)!. The same asymptotic formula holds if m(n) de-
notes the number of integers having k prime factors, multiple factors counted multi-
ply. (Landau, ibid.)
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Hence

B(n) = cen(log n)~(log log 7)™ = o(n(log n)™2).
Hence by Lemma 3

f(n) = n(log log n)(log n)~! — o(n(log n)~Y),

which completes the proof. (Clearly f(n) <mi(n) < (1-+¢€)n(log log n)
- (log #)~1.) Our result shows that the number of different integers not
greater than # of the form (p—1)(g—1) is asymptotic to the total
number of integers not greater than # of the form (p—1)(g—1).
Nevertheless there exist integers m such that (p—1)(¢—1)=m has
arbitrarily many solutions.®

By similar but more complicated methods we can prove:

The number of integers not greater than # of the form

k
L= 1) =¢@s -+, 0 (p+ primes)
i1
is greater than
cn(log log n)*1[(k — 1)!log n]~! = cri(n) + o(xi(n))

(mx(n) denotes the number of integers not greater than »# having ex-
actly k prime factors). The constant ¢ depends on % and tends to 0
as k— . For k=3, c<1. We omit the proof of these results.

THEOREM. The number M(n) of integers for which ¢(m) Sn equals
cn+o(n).

Denote by f(x) the density of integers for which m/¢(m)=x. It is
well known that this density exists.” We are going to prove that

c=1 -l-f”f(x)dx.
1

First we have to show that [7f(x)dx exists. Since f(x) is nondecreasing
it will suffice to show that for large 7, f(r) <cr—2. We have

S mfom)yr = ST+ 4 )< STLA + 557

Me=l M=l plm mel p|m
=3 wd)di5@ < 1Y 56t < on.
mel d|m dml

¢ P. Erdés, On the totient of the product of two primes, Quart. J. Math. Oxford Ser.
vol. 7 (1936) pp. 227-229.

7 Schonberg, Math. Zeit. vol. 28 (1928) pp. 171-199,
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Hence

lim 513 (m/¢(m))? < ¢
Ml
and this shows f(r) <cr—2.

Let k be a large number. Consider the integers m satisfying nuk—!
sm<n(u+1)k, u2k. We clearly have

lim sup M(n)/n < 1 + k"lf:f(“k"l)’

Uk

lim inf M(n)/n > 1+ 5 f(( + DEY).
Uk
(If wuk=m=S(u+1)k™ and m/p(m)=(u+1)k™1, ¢(m)<n and if
m/d(m) <uk=', ¢(m)>n.) If k— « both sums tend to [7f(x)dx, thus

lim M(n)/n =1 +fmf(x)dx
1

which completes the proof.

Let o(m) be the sum of the divisors of m. By the same methods as
used before we can prove the following results:

(1) The number of integers m for which o(m) Sn is cn+o(n).

(2) Denoteby g(m) the number of integers m <# for which o(x) =m
is solvable. Then % (log #)~1(log log n)* <g(n) <n(log n)~(log n)*.

It seems likely that there exist integers m such that the equation
¢(x) =m has more than m1~¢ solutions, and also that there exist, for
every k, consecutive integers #n, n-+1, - - -, n+k—1 such that
o(n)=¢(n+1) - - - p(n+k—1).2 We can make analogous conjectures
for o(n). It also would seem likely that there are infinitely many
pairs of integers x and y with o(x) =0(y) =x+y, that is, there are
infinitely many friendly numbers, but these conjectures seem intract-
able at present.

One final remark: Let ¢(n) 20 be a multiplicative function which
has a distribution function.? f(x) denotes the density of integers with
¢¥(n) 2x. Denote by M (%) the number of integers for which ny/(n) Sn.
Then lim M (n)/n always exists since it can be shown that [§f(x)dx al-
ways exists. The proof is the same as in the case of ¢(n).

UNIVERSITY OF MICHIGAN

8 It is known that there exists a number 7<10000 such that ¢(n)=¢(n-+1)
=¢(n+2), but I do not remember # and cannot trace the reference.

® The necessary and sufficient condition for the existence of the distribution func-
tion is given by Erdés-Wintner, Amer. J. Math. vol. 61 (1939) pp. 713-721.



