
PROOF OF A THEOREM OF LITTLEWOOD AND PALEY 

A. ZYGMUND 

1. Introduction. In recent years, important results in the theory of 
Fourier series were obtained by Littlewood and Paley [3].1 They used 
complex methods, and their main tool was an auxiliary function, g(0), 
which they themselves had introduced. 

Let <j>(z) be any function regular for \z\ < 1 . The real-valued and 
non-negative function g(0)—g(O; 0) is defined by the formula 

(i • i) gifi) = { ƒ * (l - P) 10'G*») N P } , o s p < l. 

The integral on the right is finite or infinite, but always has meaning. 
Let f(0) be any L-integrable function of period 27r, and let /(p, 0) 

be the Poisson integral of/. Thus 

/(P, «) = — f f(u)P(p, » - *)du, 
T Jo 

where P(p, t) = (l-p2)/2(l-2p cos t+p2) is the Poisson kernel. If 
/(p, 0) is the harmonic function conjugate to/(p, 0) and vanishing at 
the origin, and if we set 

*(*) =f(p,0) + ij(p,0), z = pé\ 

the function (1.1) will sometimes be denoted by g(0;f). 
The function g(0) is suggested by some heuristic argument (see 

[3, I]). It does not seem to possess any obvious geometric signifi­
cance, although it has a majorant, s(0), with a simple geometric 
meaning. The reader interested in this problem is referred to papers 
[4, 7]. In the present note we shall be exclusively concerned with the 
function g(0). 

As usual, by IP" we denote the class of functions <j>(z) regular in 
\z\ <1 and satisfying 

(1.2) f * | 4>Q>e*) \*d6 - 0(1), 0 g p < 1. 

As is well known, this condition implies almost everywhere the exist­
ence of the radial limit <t>(eid) =limPH>i </>(pei9). 

Received by the editors January 8, 1945. 
1 Numbers in brackets refer to the references cited at the end of the paper. 
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Basic for the Littlewood-Paley theory (see also [8]2) is the following 
result. 

THEOREM. Suppose that <j>(z)£,Hx,\>0, and that g(6) =g(d;<j>). Then 

U 2 T \ 1/X / /» 2x \ 1/X 

g\e)dej =gcx|J |*(*«)|\wj , 
with C\ depending on X only. 

This result is proved in Littlewood and Paley [3, II] (where, un­
necessarily, it is stated in a form valid for \ > 1 only). The proof the 
authors give is far from simple. The inequality (1.3) is first established 
for X = 2, 4, 6, • • • . In this case, the integral on the left of (1.3) is 
treated as a multiple (X-uple) integral, whose complexity obviously 
increases with X. On the other hand, the passage from these special 
values of X to general X > 0 is simple. 

The purpose of this note is to give another, perhaps slightly simpler 
proof of (1.3). The general idea of the proof will be as follows, 
(a) First we establish (1.3) for X = 2, which is immediate and quite 
familiar, (b) Next we show that the validity of (1.3) for any particu­
lar X implies its validity for any smaller and positive X. (c) Finally, by 
a certain conjugacy argument we pass from the case X ^ 2 to X>2 . 

The details of the proof are developed in the second section of this 
note. Part (b) of the proof is borrowed from Littlewood and Paley, 
and whatever novelty of the subsequent argument is restricted to 
part (c). 

We shall also need the following two lemmas. 

LEMMA l.Let4>{z)Ç:H
K

>\>0iandlet $(0) =supogP<i|0(pe*$)|. Then 

U 2ir N 1/X ( T 2r ^ 1 / X 

LEMMA 2. For any regular function <j>(z), z = pei>, 

4|,W|._4W,.±A(,£U|.) + ±J!1U|.. 
Lemma 1 is a very well known result of Hardy and Littlewood (see 

[ l ] or [6, p. 247]). Lemma 2 is also very well known. Its use in the 
sequel is analogous to that made by Littlewood and Paley in their 
proof of the theorem. 

2 I take this opportunity to correct a misprint in [8, II] . On p. 349, line 2, the de­
nominator (log n)ll<x should be replaced by (log »)1/X. 
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2. Proof of the theorem. It is enough to prove (1.3) for <f>(z) regular 
in |z| g l . For if 0< i?< l , and i f gR=g(0;<j)(Rz)), then 

gn{e) = R2 f (1 - P) | 4>'(Rpe") \2dp g f (1 - pR) \ <t>f{PRe^) \>dp 
J o J o 

= f\l-p)\<t>'(pe^\*dP. 
J o 

Thus gR(6)^g(0), g*(fi)-*g(0), as IS—»1. If (1.3) is valid with g, <f>(z) 
replaced by gR} <t>(Rz), then on making R tend to 1 we get (1.3) in 
full generality. 

(a) To prove (1.3) for X = 2, let <j>{z) =c0+CiZ+C2Z2+ • • • . The se­
ries is absolutely and uniformly convergent for \z\ sgl, and 

- g\#)dd = - dd\ \ (1 - p) | *'(p«") \Hp\ 
ZTTJQ ZTTJQ W O / 

- [\l - p)dp •£- f" \4>'(pe")\W 
J 0 27T •/ 0 

- f a-p)î>2k|y-wp 
•* 0 v=0 

•= è v « | c , | » f l ( l - p ) p - ' d p - Z - ; - y ' „ k l 1 

,~i «/ o *~i 2I>(2I> — 1) 

(b) Suppose that (1.3) is established for some particular value of X 
and let 0 < K < X . Suppose that 4>(z)£HK and assume for a moment 
that <j)(z) has no zeros for \z\ < 1 . Let ^=$K/X. Thus <£* = ̂ x, and 
^GH\Ifweset^(Ô)=supo^<i|tA(p^)U(Ô)=g(Oî^),G(o)=g(Ô;^), 
then 

g»(0) = (\/Ky f (1 — p) | ̂  |2(x~o/K J y \2dp « (X/K)2*2<*-*>/*(6OG2(0), 
•J o 

g'dd ̂  (X//c)" I &-*GKd6 
0 «J 0 

U 2 r \ (X— K ) / \ / / • 2*r \ K/X 

¥\W> «̂  I Gx<f0> 
by the inequality of Holder. Since we assumed the validity of (1.3) 
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for our particular X, 

{ƒ. «•*} * ^ H / , i«-v) } 
I *(«fl) I « } 

- (xAMx^0/"Cx{ ƒ *' | *(•*•) I'd»} W". 

This is (1.3), with K instead of X, and with CK= C X / K ) 1 ' 2 ^ " " ^ . 

Suppose now that <£(z) (f^O) does have zeros in |z| < 1 . It is well 
known (see [2]) that then (/>(z)—<j>i(z)+<l>2(z) (\z\ <1), where <f>i and 
<̂>2 have no zeros, and |0*Os)| â2 |$ ( s ) | , for & = 1, 2. If gk~g(0; <£<), 
then g^gi+g2, by the inequality of Minkowski. Thus 

/

2T / /» 2ir /» 2T \ 

=g 2"fa( ƒ " |*i |\0 + ƒ " | *.\'de\\ 

^22"+1C:r2lU(e*'9)|^. 
•J 0 

This completes the proof of (b). In particular, (1.3) is established for 
0<X^2 . 

(c) On account of (b), it is enough to prove (1.3) for X S^4. Let ix be 
defined by 

l/(X/2) + 1/n = 1. 

Thus 1 </x^2, since X ^ 4 . Let £(0) denote any non-negative function 
such that Mn[t] = (J?&d0)li''ul. Then 

(2.1) Ml[g] - { ƒ 2T(/)X/2^}2/ - sup ƒ *V&». 

where g=g(0; <t>)* We may even restrict £ to trigonometric polyno­
mials, without invalidating (2.1). Let us fix any such polynomial £(0), 
and let us write Y(0)=g(0;' £). If £(*) denotes the analytic function 
whose real part is the Poisson integral £(p, 0) of £(0) and whose imagi­
nary part vanishes at the origin, then MM[f(eiö)]g2?MMM[£]^i?M by 
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the very well known result of M. Riesz [S]. Here R» depends on fx 
only. Thus, observing that (1.3) has already been proved for X be­
tween 1 and 2, we get 

(2.2) M,[y] S CJfM|>] g CR,MM £ CR„ 

where C = supi^x£2C\ is an absolute constant. 
We write 

ƒ Tg2(eW)dd - ƒ (l - P) | ƒ T | 0'(pe«) \*W)de} dP 

= 2 ƒ * (1 - p«) | ƒ * | 0'(pV') | W)<«} P̂ P 

g 4 ƒ *(1 - p) | ƒ T | 4>'(pV') | 2 W ? j dp. 

The function w(z) = l^'Os))2 being subharmonic, 

1 f2* 
w(p2eie) S — I w{peiu)P{py B - «)rf«, 

7T J o 

ƒ» 2ir J /• 2ir / /» 2T \ 

w{PH^{B)de g — I ?(Ö) ^ I w(pe*")P(p, 0 - u)du\dd 
o 7 r t / o \ ^ o / 

ƒi 2x 

w{peiu)%(p, u)du, 
o 

(2.3) f \*m(e)dO£4J (i-p){f2r\<t>'(peie)H(p,e)de}dp. 

By Lemma 2, 4 | 0 ' | 2=A|<£|2 . The formula 

l a / du\ l a2Z7 
(2-4) iu - 7 *(' v) + 7 Tir • ""'^ + "" + '""" 
implies for any functions a(p, 0), &(p, 0) 

A(a#) = ÖA# + bAa + 2(apbp + p~2aebe). 

Thus, taking a= \<f>\2, b = %(p1 0), and observing that A£ = 0, we get 

4U'|2? = A(|*r?)-2{Ufe + p-2U|^}. 

I t follows that the right-hand side of (2.3), which is non-negative, 
does not exceed 
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f * f (l-P)A(\4>\*Ç)pdpd6 

+ 4 f * f ( i - p ) U | ( U , | U , | + p-»|*«ll&l)<k<»-ii + s 
• / O • ' O 

say. Since |tf| S * , | * p | - | * ' | . | p - V » | = | * ' | , | f c | S | r ' | , |p-x€»| 
SS|f' | , we find 

£ g 8 ƒ **(*)<»{ ƒ (1 - p) U' 11 f' | rfpj-

(2.5) r 2 ' 
g 8 I $(e)g(d)y(d)de 

J o 
^ 81fx[#]Jfxk]^M ^ 8C4xK^xk]^[*(*")] . 

Here we use Schwarz's inequality, Holder's inequality with the three 
indices X, X, ju» and the inequality (2.2). To A we apply the first 
formula (2.4) and note that, owing to periodicity, the integral of 
( |# | 2£)e» over (0, 2T) is zero. Thus 

A = C'a» ("'(I-p) ^-(p ^•|*|»*V" 
J o «J o op\ dp / 

= f 'd» f'p^-d^i^P 
•/ o ^ o dp 

(2 '6) - f " {I *(«") I WW - f * I *0*") I 2£0>. ö)rfp} de 

0 

From (2.1), (2.3), (2.5) and (2.6) follows 

iil\g] ^ 8CA^Mx\gWx[^(ei$)] + Ml[4>(e$)]9 

so that X = M\[g]/M\[<l>(eie)] does not exceed the largest root of the 
equation X2 = 8CA\RftX+l. This proves (1.3) for X ̂ 4 , and so also 
forallX>0. 

3. Additional remark. The constant A\ in Lemma 1 is bounded 
forX^eX) [l;6,p.247]. On the other hand, i?M = 0( /x- l ) - 1 = 0(X) as 
/z—>1 (that is, X—»oo) [5; 6, p. 149]. Hence the largest root of the 
equation X2 = 8CA\RftX+l is 0(X) for X—><*>. In other words, the 
constant Cx in (1.3) is bounded in every interval 0<egX^ l /€ , and 
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is 0(X) for X—> oo. Thus C\SKk for X à 1* where K is an absolute con­
stant. 

Suppose that <j>{z) is regular for \z\ 2§1, and does not exceed 1 in 
absolute value there. Let a be any positive constant less than l/Ke. 
Summing the inequalities 

an r2r an r2r , , 
— I gndd ^ — (Kn)n I I <l>(eie) \nd6 ^ 2v(aK)nn»/nl 
nU o n\ Jo 

for » = 0, 1, 2, • • • we get 

(3.1) f *exp {ag(6)}d0gp. 
Jo 

This inequality may be considered as the limiting case of (1.3) for 
X= oo. I t may even be slightly strengthened. If <t>(z)=u+iv is regu­
lar f or \z\ < 1 , and if \u\ 5£1, then we have (3.1) where a and (î are 
positive absolute constants. 

To show this, we observe that the proof of §2 could be slightly 
modified, by using instead of Lemma 2 the relation 

2|<j!>'|2 = Au2 (<t> = u + iv) 

and instead of Lemma 1 the inequality 

U 2r \ 1/X ( r2T } 1/X 

u\e)de\ ^ M J I «(Le) \He) » x > i. 
where w(p, 0) is any harmonic function satisfying /0*|w(p, 0)|xd0 
= 0(1), and where w(l, 0) =limp^iw(p, 0), U(d) —supogP<iu(p, 0). The 
coefficient B\ depends on X only and it is 0(1) as X—>oo. (Unlike A\, 
B\ tends to infinity as X-->1.) This modification of the argument of §2 
leads to the following analogue of (1.3) 

U 2T . IA i r2* } 1 / x 

g\e)de^ =~Cx'|J |*(M)|X<*»| 
(X > 1, <t> = u + iv) 

and here again C\ = 0(X) as X—><*>. Let C\ ^K\ for X ̂ 2 . If | u \ ^ 1 , 
and if we consider (3.2) for X = 2, 4, 6, • • • , we immediately obtain 

/

» 1r /» 2 T oo ,y2n 
exp agdO < 2 I coshagd0 ^ 4TTX) (J£-2rc)2n g /S < oo. 

o Jo o (2w)! 

This completes the proof. 
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