ON TOPOLOGIES FOR FUNCTION SPACES
RALPH H. FOX

Given topological spaces X, T, and ¥ and a function % from X XT
to Y which is continuous in x for each fixed ¢, there is associated with &
a function #* from T to F=YZX, the space whose elements are the
continuous functions from X to Y. The function k* is defined as fol-
lows: b*(t) =h,, where h(x) =h(x, t) for every x in X. The correspond-
ence between & and k* is obviously one-to-one.

Although the continuity of any particular # depends only on the
given topological spaces X, T, and Y, the topology of the function
space F is involved in the continuity of #*. It would be desirable to
so topologize F that the functions A* which are continuous are pre-
cisely those which correspond to continuous functions %. It has been
known for a long time that this is possible if X satisfies certain condi-
tions, chief among which is the condition of local compactness (Theo-
rem 1). This condition is often felt to be too restrictive (since it
practically excludes the possibility of X itself being a function space),
and several years ago, in a letter, Hurewicz proposed to me the prob-
lem of defining such a topology for F when X is not locally compact.
At that time I showed by an example (essentially Theorem 3) that
this is not generally possible. Recently I discovered that, by restrict-
ing the range of T in a very reasonable way, one of the standard
topologies for F has the desired property even for spaces X which
are not locally compact (Theorem 2). In this last result the condition
of local compactness is replaced by the first countability axiom and
this appeals to me as a less troublesome condition.

It should be pointed out that the problem is motivated by the spe-
cial case in which T is the unit interval. When T is the unit interval,
h is a homotopy and %* is a path in the function space; in the topology
of deformations, equivalence of the concepts of “homotopy” and of
“function-space path” is usually required.

Among the various possible topologies for F there is one, which I
shall call the compact-open?! (co.0.) topology, which seems to be the
most natural. For any two sets, 4 in X and Win Y, let M(4, W)
denote the set of mappings fEF for which f(4)CW. The co.o. to-
pology is defined by selecting as a sub-basis for the open sets of F the
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sets M(4, W) where 4 ranges over the compact subsets of X and W
ranges over the open subsets of Y.

TuaEOREM 1. If X is regular and locally compact, Y an arbitrary topo-
logical space, and if F has the co.o. topology, then continuity of h is
equivalent to continuity of h* for any topological space T.

THEOREM 2. If X is a space which satisfies the first countability
axiom, Y an arbitrary topological space, and if F has the co.o0. topology,
then continuity of h is equivalent to continuity of h* for any T which
satisfies the first countability axiom.

THEOREM 3. If X is separable metrizable and Y is the real line, then in
order that it be possible to so topologize F that continuity of h and of h* are
equivalent, it is necessary and sufficient that X be locally compact.

LeEmMA 1. If F has the co.o. topology, then continuity of h implies

continuity of h* under mo restrictions on the topological spaces X, T,
and Y.

ProoF. Let W be an open set in ¥ and 4 a compact set in X and
let ¢, be a point in A*~1(M (4, W)). Then 4 X, Ch—*(W). Since k~1(W)
is open it is the union of open sets U, X V.. Since 4 is compact, 4 Xt
is contained in a finite union U}.,U;X V; with each V; a neighbor-
hood of ¢,. Then N}.,V;is an open neighborhood of ¢y and is contained
in B*Y (M4, W)).

Proor oF THEOREM 1. In view of the lemma it is sufficient to prove
that continuity of A* implies continuity of 4. Let W be an open set
in Y and let (xo, £o) be a point in A~1(W). Since k* (o) is continuous in x
there exists an open neighborhood U of %, such that #*(t0)) E M (U, W).
Because of the conditions on X there is an open neighborhood R
of x, such that R is compact and contained in U. Since M(R, W)
is open and contains k*(f,) there is an open neighborhood V of ¢, such
that B*(V)CM(R, W)CM(R, W). Thus RX V is an open neighbor-
hood of (x,, t,) which is contained in A~Y(W).

ProoF oF THEOREM 2, As before we have to prove that continuity
of »* implies continuity of k. Let W be an open set in ¥ and suppose
that A—*(W) is not open. Then there is a point (x,, ¢) in A~1(W) which
is also in the closure of the complement of 5~1(W). Let {G.} be a base
for the open sets of X X T at the point (x,, fp) and choose, for each
integer #, a point (x,, £,) in the intersection of Ni<,G; and the com-
plement of A~1(W). Since h*(f,) is continuous in x there exists an
open neighborhood U of %, such that A*(t)EM(U, W). Let
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A =UNUZ_x,. Since A is compact, M(4, W) is open and since #*
is continuous and {,ER*1(M (4, W)), there is a neighborhood V of #,
such that 2*(V)CM(4, W). There is an integer N such that x,&U
and ¢, €V whenever n>N. Hence k(x,, t,) €W for every n greater
than N. This contradiction with the choice of the points (x,, t.) proves
that A~*(W) is open. Thus % is continuous.

LEMMA 2. Let X be a separable meirizable space, let Y be the real line,
and suppose that the topology of F is such that continuity of h for
T =0, 1] implies the continuity of k*. Let W= (a, b) be a finite open
interval in Y and let A be a closed subset of X which is not compact.
Then the set M (A, W) has no interior points.

PRrOOF. Since 4 is not compact there is a sequence {x.} in 4 such
that U;_,x, is closed in X. Given any element %*(0) of the set
M(A, W) let us define

hi(x,) = min {1 + b, ho(x,) + nt}.
Since the function % is defined over the closed set X X [0]\U (U2 x,)

n ==l
%[0, 1] it may be extended continuously over the normal space
X x[0, 1]. If £>0 there is an integer # such that a4-nf>1-b; hence
h*(t) is in the complement of M(A4, W) for every positive . By hy-
pothesis the topology of F is such that k* is continuous. Hence £*(0)

belongs to the closure of the complement of M(4, W).

LeMMA 3. If the topology for F is such that continuity of h* always
implies continuity of h then, given a point xoin X, an open set Win Y,
and an element fo in M(xo, W), there is a neighborhood R of xo such that
M(R, W) is a neighborhood of fo in F.

Prook. Define ¢/(x, f) =f(x) for every (x, f) EX X F. Since ¢*(f) =f,
¢* is continuous and hence ¢ is also continuous. Since ¢—*(W) is
therefore open there must be a neighborhood R of x, and a neighbor-
hood V of fosuch that ¢(R, V)CW. Thus fo& VC M (R, W) and hence
M(R, W) is a neighborhood of f, in F.

ProoF oF THEOREM 3. Let W be the finite open interval (e, b) and
suppose that the topology of F is such that continuity of & and of k*
are equivalent for every T. From Lemma 3 it follows that, given any
point x in X and any element f, in M (x,, W), there is a neighborhood
R of x, such that M (R, W) is a neighborhood of f, in F. Since X is
regular there is a neighborhood U of x, whose closure is contained
in R, so that M(T, W) is also a neighborhood of f,. Since f, is an
interior point of M(T, W) it follows from Lemma 2 that T is com-
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pact. Thus X must be locally compact. This proves the necessity of
the condition; sufficiency is a consequence of Theorem 1.

COROLLARY. If YV is the real line and X is separable metrizable but not
locally compact, then F does not satisfy the first countability axiom in the
co.0. topology.

Proor. Let W be the finite open interval (a, b). If F satisfied the
first countability axiom then Theorem 2 would apply to yield the
continuity of the function ¢ defined above. If x, is a point at which X
is not locally compact and f, any element in M(xo, W), then it follows
from the proof of Lemma 3 that there is a neighborhood R of x, such
that M (R, W) is a neighborhood of f, in F. Let U be a neighborhood
of xo whose closure is contained in R, so that f, is an interior point of
M(T, W). Since U is not compact this is not in agreement with
Lemmas 1 and 2. This contradiction shows that F does not satisfy
the first countability axiom in the co.o. topology.
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