
A FIXED-POINT THEOREM 

A. D. WALLACE 

Introduction. The purpose of this note is to sharpen a recent result 
of G. E. Schweigert [4].1 It will be shown that the condition of semi 
local-connectedness may be dropped. However, if this is strengthened 
to local-connectedness, then the conclusion asserts the existence of a 
fixed point. Further, though perhaps of less interest, it is shown that 
separability is not necessary. 

In a second section we give a somewhat more abstract version 
which is valid for certain partially ordered topological spaces. So far 
as is known this is the first result of this type to appear in the litera­
ture. 

1. Sch weigert's theorem. It is assumed that S is a compact (that 
is, bicompact) Hausdorff space, connected and nondegenerate. More­
over T is a topological transformation of S onto itself, TS = 5. 

THEOREM. If e is an end point of S fixed under T, then there exists a 
continuum KQS—e invariant under T. Further, no point of S separates 
any pair of points of K in S. 

PROOF. Since e is an end point it is readily seen that we can find 
a point y such that 

(1) S = A + B, e E A, y+T~lyCB, A-B = zG.S, 

with A and B nondegenerate proper subcontinua of 5. We infer that 

(2) S = TA + TB, e^TA, y E TB, TA-TB =* Tz, 

so that S={A + TA)+B>TB. Clearly A + TA is a continuum and 
hence [5] so is 

(il + TA)BTB = zTB+ Tz-B. 

We then have (supposing that zj&Tz) either (a) zÇTB and TzCiS—B 
or (b) Tz<EB and ZÇ.S-TB. In the first case T^zEB and we are 
able to apply the same argument that we use in the second case if 
we use T~l in placç of T. We therefore assume (b) and readily verify 
t h a t ^ C r ^ , TBCB. 

Using induction it follows that we may write 
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S = TnA + TnB, e G T»At Tn+1z G TnB$ Tnz = TnA • T»B, 
Tn-1Â Q TnAt TnB Q T^B. 

If X is the union of the sets TnA and Y is the intersection of the sets 
TnB it may be shown that X is connected and K — HC- Y is a con­
tinuum [5]. Clearly T3C=T'X, r F = F so that if is an invariant con­
tinuum contained in S — e. Suppose that p and q are points of K 
separated by r in S: 

s-r=u + v, peu, qev, u\v. 
We may admit that e is in U. For some m and all n^m it is clear 
that both Z7and F intersect r w i . Thus, this set being connected, we 
infer that r is a point of TnA and hence that Y meets TnA and con­
sequently Y has a point in common with X. But this would imply 
that for some n, Tn+1z=Tnz, giving Tz = z. 

COROLLARY. There exists a continuum ffC5-e, having no cut point 
and invariant under T. 

This follows at once if we observe that an argument advanced by 
Kelley [2] to improve a theorem of Ayres [l] is unnecessarily re­
stricted by the assumption of separability. The basic material neces­
sary to modify Kelley^ proof will be found in §§1 and 3 of [5]. In 
particular the generalized Brouwer theorem is given on p. 488. See 
also the references to Milgram, Moore, and Tukey and, further, Kura-
towski [3]. 

COROLLARY. If S is locally connected there exists a fixed point dis­
tinct from e. 

PROOF. With the notation employed in the proof of the theorem 
suppose that p and q are distinct points and let P and Q be disjoint 
open connected sets containing p and q and lying in 5—e. Fpr some m 
and all n^m both P and Q intersect TnA. Thus P meets both TnA 
and TnB and so contains Tnz. Similarly Q contains Tnz. This is a 
contradiction. 

It is a simple matter to show that Schweigert's theorem follows 
from the one given above. We need only use the same argument he 
gives to pass from the invariant node to the case of the fixed end point. 

2. A generalization. In this section it is assumed that P is a com­
pact Hausdorfï space containing more than one point and, in addi­
tion, that we are given a binary relation A on P. We suppose that A 
is reflexive and transitive so that we have (a) xAx for each x in P and 
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(b) xAy and yAz imply xAz. On the topological side let M(a) [N(a)] 
denote the set of all x such that xAa [aAx] holds. We then assume 
that A is semi-continuous (that is, both lower and upper semi-continu­
ous) in the sense that 

(i) For each a in P the sets M(a) and N(a) are closed. 
A non-empty set Q is termed A-simple if for any pair gi, q% of Q 

we have either q±Aq2 or qzAqi. In virtue of a result due to Hausdorff 
(or directly by transfinite induction) it is readily seen that there exists 
a maximal A-simple set containing any given A-simple set. An element 
p is called a maximal element for a set R if r£R and pAr imply rAp. 

Every maximal A-simple set is closed. 
For if Q is such a set then Q(q) = M(q)+N(q) is closed for each 

qGo and it is not difficult to see that Q is the intersection of all the 
sets Q(q) for all g£(X 

Each non-void closed subset of P contains a maximal element. 
It is legitimate to suppose that the set concerned is P itself, so let Q 

be a maximal A-simple set. For gi, g2 in Q one set of the pair iV(gi), 
N(q2) is a subset of the other. For each q the set N(q) is closed and in 
virtue of the compactness of P there is a point p common to all these 
sets. The point p is in Q. If x is a point of Q we have xAp since p is 
in the set N(x). Suppose that for x in P — Q we have pAx. Since Q 
is maximal A-simple there is a point y in Q such that both xAy and 
yAx fail to hold. But by transitivity pAx and yAp imply yAxf a con­
tradiction. 

Three further assumptions must be made about P: 
(ii) There exists a unique element e in P such that we have eAx for 

each x. 
(iii) Each set M(a) is A-simple. 
(iv) For any x, y distinct from e there is a z such that zAx, zAy hold 

butZyée. 

It follows at once that 
If Q is maximal A-simple then aÇzQ implies M (a) C.Q. 
For if qÇïQ and xÇ,M{a) then aAq and transitivity imply xAq. If 

qAa holds then qÇzM(a) and by (iii) we have either xAq or qAx so 
that x is an element of Q by maximality. 

From (iv) we see that 
Any pair of maximal A-simple sets X, Y have in common an ele­

ment Z5*e. 
To prove this let x, y be elements of X — e, Y—e respectively. Let z 

be given by (iv). Then z is in M (x) and so in X. Similarly z is in Y. 

THEOREM. If T is a homeomorphism of P onto itself and both T and 
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T~* preserve the relation A, then there exists anf^e such that both TfAf 
and f AT f hold. 

PROOF. Let C be a maximal A-simple set. Then TC is a set of the 
same type. Let z be an element common to C and TC and distinct 
from e. Both z and Tz are in TC so that we must have either zATz 
or TzAz. Now the argument we employ for the former case can be 
used in the latter provided we replace T by T"1 so that we assume 
that we have zATz. Let Z be the set 2, Tz, T2z, • • • . I t is clear that 
if D is any maximal A-simple set containing Z, then TD has these 
same properties. Let X be the intersection of all the maximal A-simple 
sets containing Z. Then X is closed, A-simple, and further satisfies 
the condition TX = X. Let ƒ be a maximal element of X. Both Tf 
and T~xf are in X and so we have TfAf and T~~lfAf. The latter implies 
fATf. This completes the proof. 

COROLLARY. If A is symmetric then there is a fixed point distinct 
from e% 

The second corollary to the theorem of §1 follows if we define A as 
follows: xAy holds iî x~e, x=y or x separates y from e in S. 
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