PROOF THAT THE MERSENNE NUMBER M_{167} IS COMPOSITE

CHARLES B. BARKER

The Mersenne numbers are of the form

$$
M_{p}=2^{p}-1
$$

where p is a prime. It is known, except in a few instances, whether M_{p} is prime or composite for all p not greater than 257 . The unknown cases are those for which $p=167,193,199,227$, and 229.

The author of this paper has recently completed the proof that M_{167} is composite. This proof is based upon the well known theorem of Lucas, which subsequently was amplified by Lehmer. ${ }^{1}$ The most recent contribution is that of H.S. Uhler, ${ }^{2}$ who proved that M_{157} is composite.

The method employed by the author was direct computation upon an eight-bank electric calculating machine. Each residue was checked by computing it two ways, that is, by calculating r_{i} from both

$$
\left(r_{i-1}\right)^{2}-2, \quad \text { and } \quad\left(M_{167}-r_{i-1}\right)^{2}-2
$$

Obviously one cannot list the whole series of residues, so only the last one will be given here. This final residue was found to be
163320982788167753871550317937924268483828173373557.

Since this residue is not zero, it follows that M_{167} is composite.
Univery ay of New Mexico
Received by the editors January 25, 1945.
${ }^{1}$ D. H. Lehmer, On Lucas's test for the primality of Mersenne's numbers, J. London Math. Soc. vol. 10 (1935) pp. 162-165.
${ }^{2}$ H. S. Uhler, First proof that the Mersenne number M_{157} is composite, Proc. Nat. Acad. Sci. U.S.A. vol. 30 (1944) pp. 314-316.

