
ON THE DEGREE OF APPROXIMATION OF FUNCTIONS 
BY FEJÉR MEANS 

A. ZYQMUND 

1. Continuous functions. I t has been proved by S. Bernstein that 
if f(x) is periodic and of the class Lip a, 0 < a < l , then the (C, 1) 
means an(x) = <rn(x;f) of the Fourier series of ƒ satisfy the condition 

(1.1) * * ( * ) - ƒ ( * ) - O ( f r - ) , 

uniformly in x. The result is false for a = 1. The place of (1.1) is then 
taken by 

(1.2) crn(x) - ƒ(*) - 0(log »/»), 

and, as simple examples show, the factor log n on the right cannot be 
removed (see, for example, A. Zygmund, Trigonometrical series, p. 62). 
I t will be shown here that for power series the inequality (1.1) holds 
even for a = l . More generally, we have the following theorem. 

THEOREM 1. Suppose that f (x) is periodic, continuous, and that the 
Fourier series of f is of power series type, 

oo 

ƒ(*) ~ YJ Cveivx. 

Then 

(1.3) | <rn~i(x) - ƒ(*) | S Ao>(2T/n), 

where co(S) is the modulus of continuity off and A is an absolute constant. 

The proof is based on the following lemma. 

LEMMA. Suppose that 

(1.4) g(x) ~ I > , e * > * 
—00 

satisfies \g(x+h)~g(x)\ £*M\h\. Then 

(1.5) | o^i(*) - g(x) | g BM/n9 

where g(x) is the function conjugate to g(x) and crn(x) are the (C, 1) 
means of the series conjugate to (1.4). 

For the proof of the lemma we note that 
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1 Cvr i 1 1 
| ( s ) = [g(X + *) - g(% - t)] — COt — tdt, 

T J o 2 2 
1 r 

?n-l(*) [g(x + t) - g(tf - *)] 
f J o 

[ 1 1 sin w* 1 
— cot — / \dt, 
2 2 n{2 sin (//2))2J 

1 C * r sin w/ 

7T J o ^(2 sin (v2))2 

= - + — I -Pn + Qn, 

say. Since | sin ?^| g n sin tSn{2 sin (£/2)) for 0 ^ ^ 7 r , 

T J o 2 sin (t/2) T J o (2/w)t/2 n 

In order to estimate Qni we introduce the function 

1 Cv sin nu 
An(t) = I du, 

irnJt (2sin(w/2))2 

and integrate by parts. By the second mean value theorem, 

I I 2 1 T 

7m2 (2 sin (*/2))2 2rc2/2 

The function g is absolutely continuous and |g ' (#) | S M almost 
everywhere. Thus 

7T I L Jir/n I 

+—I r * u ' ( * + o + « * ( * - t)]An(t)dt 
V \J r/n 

1 2TT IT 2Jf /•* . . 

7T w 2n2(w/n)2 T J v/n 

ilf M r* dt 2 M 

7TW ft2 J r/n V T ft 

This completes the proof of the lemma, with B ~w+2/w. 
Suppose now that the Fourier series of ƒ is of power series type so 
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that ƒ = -if. If |/(*+A) -ƒ(*) | g M \ h\, then 

(1.6) | *„_!(*) - ƒ(*) | - | ?_!(*) - f(x) I â BJf/». 

To complete the proof of Theorem 1, we introduce the function 

ƒ»(*) - — f /(* + 0* = [F(* + *) - *(* - *)]/2* 

" / sin *>A \ 

- £*«"• (—— ), 
„=0 \ vh / 

where T^x) is a primitive of/. Hence dfh/dx exists, is continuous, and 
does not exceed o)(2h)/2héco(h)/h in absolute value. Moreover, the 
Fourier series of f h is also of power series type. Now, 

^ | ffn^i(x;f) - OW-l(s; ƒ*) | + | <Tn-l(x;fh) ~ ƒ*(*) | + | ƒ*(*) ~ ƒ ( * ) | 

= ÛJW + j8n + 7 n , 

say, and 
Y-"l^7 f !ƒ(* + ')-ƒ(*)]* 

I 2rl*J —h 

g «(*), 

«(A) 1 
ft.^5~— (by (1.6)), 

h n 
an = | <rn_iO; ƒ - ƒ0 | g max* | ƒ — ƒ* | â «(A). 

If we set h~2ir/n and collect the results, we obtain (1.3) with 
A~2+B/lT<4t. 

2. Additional remarks. The foregoing proof of the lemma has cer­
tain disadvantages. First of all, it uses the result that a Lipschitz 
function is an indefinite integral, a fact which lies deeper than the 
assumptions of the lemma. Moreover, the argument does not work 
with the Lp metric. These difficulties are avoided by the following 
somewhat longer variant of the proof of the lemma. For the sake of 
brevity we do not compute the absolute constants C that occur in the 
proof. 

Let Pn and Qn have the same meaning as before, and let $(x, t) 
=f(x+t)-f(x-t). Hence 

i i I 1 C T , n sin nt I CT/n i , x i , , 
| P . | £ - I *(*, /) „ . .,^dt £ I | *(*, t) | rW. 

I 7T Jo n(2 sin (t/l))2 I J o 

Let Rn{t) = 1 /T»(2 sin (t/2))2< 1/nt2. Then, for » £ 1, 
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Qn = I $(x, t)Rn(t) sin ntdt 
J r/n 

ƒ• x ( n — l ) / n 

\[/(x, t + ic/n)Rn{t + r/n) sin ntdt, 
o 

ƒ• ir(n— l ) / w 

*K#, /) [£n(/) - Rn(t + *•/«)] sin rctó* 
ir In 

ƒ» ir(n— l ) / n 

[iK*. t) - 1^0, / + v/n) ]Rn(t + *•/») sin ntdt 
T/n 

ƒ• ir /n 

^(#, t + T/n)Rn(t + T/^) sin w/d/ 
0 

+ f f(x, t)Rn(t) sin **» = In + Jn + Kn + Lny 
J ir(n-l)/n 

say. 
By the mean-value theorem 

| Rn(t) - Rn(t + w/n) | ^ Cn~21r\ 

so that 

\In\ Û Cn-2 f | iK*f t) | r8^/ g CV"2 f I *(*, /) I t-Ht. 
J rln J vjn 

Since Rn(t+Tr/n)£l/nt2, and 

lK*i 0 - iK*. * + */») = iK* + * ~ */2», T/2») 
— ^(# — / — 7r/2^, w/2n), 

we find 

I A | ^ C r 1 f | f(x + t - w/2n, r/2n) \ t~2dt 
J r/n 

+ Cn*1 I | yp{x - t - w/2nt ir/2n) \ tr2dt. 
J Tjn 

Moreover, since Rn(t+w/n) < Cn for O^t^w/n, 
< vfn 

\Kn\ £Cnf " | *(*,* + *•/») | # . 

Uy, 

£n | =S C»-1 ƒ | *(*, t)\dt = Cn-1 f ' " | *(* + », 0 | 
*J x(n-l)/n «̂  0 

<». 
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By assumption, \yp(x, u)\ SM\u\, uniformly in x. From this we 
immediately deduce that each of the terms | Pn\, | In\> | Jn\, \Kn\> 
\Ln\ is less than or equal to CM/n, and (1.5) is proved. 

Suppose now that instead of the inequality | g(x+h) — g(x) \ £M\h\ 
we have 

UP 

(2.1) Mp[g(x + *) - g(x)] « | ƒ T | g(x + h) - g(x) |*<**| 

g M\ h\ 

for some p^l. Then Minkowski's inequality for integrals shows that 
Mp[Pn], Mp[ln], Mp[Jn]t Mp[Kn], Mp[Ln] are all less than or equal 
to CM/n. For example, 

MP[Pn] S f IfpfoK*, t)]rldt £ f *2Jfi/ - 2MTT/W, 
•/ o •* o 

Mp[ln] S Cn~2 f MP[K%, t)]r*dt 

S 2CMn~* ( t-Ht = CM In, 
J r/n 

and similarly in other cases. Thus, under the hypothesis (2.1), 

Jf,fa-i(*) ~ *(*)] ^ W » 
wZ r̂e 3 w aw absolute constant. By an argument similar to that by 
which Theorem 1 was deduced from the lemma, we obtain the follow­
ing theorem. 

THEOREM 2. Suppose that the Fourier series of f(x) is of the power 
series type. Then 

Mp[an^(x) - ƒ(*)] S Aa>p(2ir/n) (p à 1) 

where cop(8)=supi*|;s$ Mp[f(x+t)—f(x)]. 

Theorems 1 and 2 hold for (C, a) means, whatever a > 0 . The ana­
logues for Abel means are immediate consequences of the Cauchy-
Riemann equations. 
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