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1. Introduction. The theory of functions of a single complex varia­
ble is essentially identical with the conformai geometry of the real 
(or complex) plane. However, this is not the case in the theory of 
functions of two or more complex variables. Any set of n jj£ 2 functions 
of n complex variables with non vanishing Jacob ian induces a corre­
spondence between the points of a real (or complex) 2#-dimensional 
euclidean space i?2n. The infinite group G of all such correspondences 
is obviously not the conformai group of i?2n, which is merely the in-
versive group of (n+l)(2n + l) parameters.1 Poincaré in his funda­
mental paper in Palermo Rendiconti (1907) has called G the group 
of regular transformations. However, in an abstract presented before 
the American Mathematical Society, 1908, Kasner found it more ap­
propriate to term it the pseudo-conformal group G. This name is now 
standard. 

In his work of 1908, which he later published in full in 1940, Kasner 
investigated the possibility of characterizing the pseudo-conformal 
group G of four dimensions (the case n = 2 complex variables) in 
a purely geometric way.2 His principal result is as follows: A trans­
formation of Rt is pseudo-conformal if and only if it preserves the pseudo-
angle between any curve and a three-dimensional hypersurface at their 
point of intersection. This theorem demonstrates how the pseudo-angle 
may be used to characterize G within the group of arbitrary point 
transformations of R*. 

We shall show in this paper how Kasner's pseudo-angle theorem 
can be carried over to 2n dimensions almost without any change. The 
pseudo-angle is important also because all other differential invari­
ants of the first order under the pseudo-conformal group are really 
combinations of this pseudo-angle.8 

2. The minimal coordinates. Let (xh #2, • • • , xn; yu 3>2, • • • , yn) 

Presented to the Society, September 13,1943, received by the editors July 6,1944. 
1 The conformai group of a euclidean space Rm of any dimension m>2, odd or 

even, is the inversive group of (*w-f-l)(w+2)/2 parameters (Liouville's theorem). 
Fialkow has studied the conformai geometry of any curve not only in a euclidean 
space Rm but also in any riemann space Vm. See his paper, Conformai geometry of curves, 
Trans. Amer. Math. Soc. vol. 51 (1942). 

2 Kasner, Conformality in connection with f unctions of two complex variables. Trans. 
Amer. Math. Soc. vol. 48 (1940) pp. 50-62. 

8 See Kasner and DeCicco, Pseudo-conformal geometry. Functions of two complex 
variables, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 317-328. 
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= (xa, y a) denote the cartesian coordinates of a real or complex euclid-
ean 2w-dimensional space R2n. We shall find it convenient to introduce 
the minimal coordinates (uif w2, • • • , un; Vi, v2, • • • , vn) = (ua, va) de­
fined by 

(1) Ua = Xa + iy<x, Va « Xa — fy«, 

for a = 1, 2, • • • , n. The inverse of this correspondence is 

(2) Xa = («« + »«)/2, ?« = («a ~ Va)/2f. 

The following relations are noted between the partial derivatives in 
minimal coordinates and cartesian coordinates : 

d 1 / d d \ d 1 / d d \ 
(3) — = —( ; — ), — = — ( — + i — ). 

dua 2 \dxa dya/ dva 2 \dxa dya/ 
The operators d/dua may be called the mean derivatives; and the oper­
ators d/dva may be termed the phase derivatives.4 

In minimal coordinates, the square of the linear element ds is 
n 

(4) ds2 = ]jjj duadVa. 

The angle 0 between any two curve elements through a common point 
is 

]T) \dua dva + dua dva ] 

(5) cos 0 = 

! f X àua *dva jl^LdUa ) dva
 ) J 

3. The pseudo-conformal group. This is given in minimal coordi­
nates by 

(6) Ua = Ua(Ui, U2, ' • ' , Un), Va = Va(Vl, V2i • • • , t>»)» 

fora = l ,2, • • • , #, where the jacobians \dUa/dup\ and |C)F«/ÔZJ/Î| are 
each not zero. Our problem is to inaugurate the study of this group 
in detail. 

In what follows, we shall omit from consideration the special mini­
mal w-flats ua~const, and va~const. Our pseudo-conformal group 
may be defined as the direct part of the total mixed group preserving 
these 2oow special minimal w-flats. 

4 Kasner, The second derivative of a polygenic function, Trans. Amer. Math. Soc. 
vol. 30 (1928). Also Kasner and DeCîcco, The derivative circular congruence-representa­
tion of a polygenic function, Amer. J. Math. vol. 61 (1939) pp. 995-1003. 
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4. The pseudo-conformal geometry of differential elements of first 
order. We shall be interested mainly in the geometry of the curve ele­
ments at a fixed point of R2n. These form a (2# — l)-dimensional mani­
fold 2(2„-l). 

Let (<£i, 02, • • • , <t>n) $u ^2, • • • , ^n) = (0«, ^«) be any set of num­
bers (not all zero) proportional to the differentials (duu du2f • • • , dun; 
dvi,dv2, • • • ,dvn) —{dua, dva) respectively so that (f>a~pdua, fa^pdva. 
Then any such set and only those sets proportional to it define, in 
homogeneous coordinates, any curve element e of S(2n~i). 

The pseudo-conformal group G induces the (2n2 — l)-parameter 
group G(2n*-i) among the curve elements of S(2n-i) defined as follows: 

n n 

(7) P$« = X) a*rf>fif P*« = Z) *«^/9, 

fora = l, 2, • • • , n, where the determinants \aap\ and \bap\ are each 
not zero. 

5. The isoclines. An isocline y2r of 2r dimensions where 0<r<n is 
defined by the system of (2n — 2r) linear equations of the special forms 

n n 

(8) V x ^ = 0, V M a ^ = 0, 

for a = l, 2, • • • , n — r, where each of the matrices ÇKap) and (AM) is 
of rank (n — r). 

A consideration of these equations will show that there are <*> 2r(n-r) 
isoclines y2r in 2(2«-i). Also r curve elements which do not lie in a 
lower dimensional isocline determine a unique 2r-dimensional iso­
cline. Of course, two distinct isoclines will intersect in an isocline 
whose greatest possible dimension is equal to the lowest of the two 
given isoclines or else they will have no common curve elements. 

THEOREM 1. Under the induced pseudo-conformal group G(2nt-i), any 
two 2r-dimensional isoclines are equivalent. Any isocline y2r is a pseudo-
conformal manifold S(2r-i) contained in the larger pseudo-conformal 
manifold 2(2w-i). 

The proof of Theorem 1 is as follows. By applying (7) to (8), any 2r-
dimensional isocline becomes a 2r-dimensional isocline under G(2n2-i). 
Any isocline y2r may be carried into the canonical isocline y2r(0) 

(9) 0r+i = 0r+2 = • • • = 0n = 0, yj/r+i = ^r+2 = • • • = ^n = 0. 

By the preceding, we may note that (0i, 02, • • • ,0rî^i,^2, • • -,^v) 
may be used as homogeneous coordinates of any curve element of the 
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canonical isocline Y2r(0). By this remark and by determining the sub­
group of <3(2n*-i) preserving Y2r(0), it is seen that the proof of our Theo­
rem 1 is complete. 

6. The pseudo-conformal geometry of two curve elements. In the 
first place, it is observed that the most general transformation of 
G(2W2-i) which will carry the curve element (1,0, • • • , 0; 1, 0, • • • , 0) 
into the curve element (pi3>a\ pi^i1*) is of the form 

(10) p$« « pi$« Vi + H ««*** P*« = Pi*« Vi + Z) baf&e-

Any curve element which lies in the isocline of dimension two de­
termined by (1, 0, • • • , 0; 1, 0, • • • , 0) must be of the form 
(0i2\ 0, • • • , 0; $L2), 0, • • • , 0). The transform of this is 

(11) p$« = P!$« 01 , p^« = pi$a fa . 

These immediately guarantee that the transformed element (*£2), 
^i2)) is in the isocline determined by ($£\ ^i1*). Moreover the ex­
pression 

(i2) (*?w:\(*zwa\ 
which is the same for a = l, 2, • • • , n} is invariant. By taking the 
logarithm of this invariant, and then multiplying the result by l/2i, 
it is found by (5) that the resulting invariant represents the angle be­
tween the two given curve elements. 

THEOREM 2. Two curves elements e\ and e2 which lie in the same two-
dimensional isocline y2 possess the unique invariant 

1 JL ( 2 ) / ( 1 ) 

(13) 0 = — log 
2i \[/W 4><x> 

a a 

which is the same f or all a = l, 2, • • • , n. It actually is the angle be­
tween the two curve elements e\ and e2. 

It may be proved that any pair of curve elements not in the same 
two-dimensional isocline may be carried into any other such pair. 
Thus two curve elements will possess a differential invariant of the 
first order if and only if they lie in the same two-dimensional isocline 
72. In that case, they have a unique invariant which is actually the 
angle between them. 

7. Kasner's pseudo-angle. Any (2n — 1)-dimensional hypersurface 
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element S(2n-i) of S(2n-i) may be given by the equation 

(14) 2 (M« + Wo) <= 0. 
amal 

The homogeneous coordinates of any hypersurface element of (2n — 1) 
dimensions are (ku fe, • • • , kn\ lu h, • • • , Zn) = (&<*» /«)• 

Since we wish to omit from consideration those hypersurface ele­
ments which contain the special minimal w-flat elements, neither all 
the k's nor all the Z's are zero. 

The transformation formulas between the (2« —1)-dimensional hy­
persurface elements S(2n-i) in S(2n-i) are 

n n 

(15) C&0 = 22 act&Kcti el? = ] C ^a/3^«, 
a«l a-1 

for j 8= l , 2, • • • , n. 
Let e(<t>a, ^a) be any curve element of 2<2n-i). The two-dimensional 

isocline determined by e is given parametrically by 

(16) $a = r<f>a, *a = s\l/ai 

where r and 5 are the variable parameters. This isocline intersects the 
hypersurface element S(2W-D given by equation (14) in the curve ele­
ment €*(<£«, ^a ) given by 

(17) — = - X £ Za^a, JL « x £ M « . 

By Theorem 2, the angle between the two curve elements e and e* is 
invariant. Therefore it is an invariant between e and S<2*-i). 

We shall now show that the angle obtained above is the unique in­
variant. Any curve element e may be carried into the canonical curve 
element e (0 )(l, 0, • • • , 0; 1, 0, • • • , 0). By (10), it is seen that the 
group preserving this canonical curve element e(0) must satisfy the 
conditions aii = &n = pi, ^ai = 6ai = 0, for a = 2, 3, • • • , n. Hence (15) 
may be written in the form 

<rki = piKi, ah — PiLu 

(18) » « 
<rkp = 2-< aoc^Kai crip = 22 bctpLot, 

a=l a«l 

for 0 = 2, 3, • • • , n. 
By choosing a1^ = akp/Ki for /3 = 2, 3, • • • , n> the above transfor­

mation carries the hypersurface element (ka) la) into the hypersurface 
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element (Ki, 0, • • • , 0; Li, 0, • • • , 0). This clearly proves that a 
curve element e and a hypersurface element »S2n-i possess only one 
invariant. 

THEOREM 3. A curve element e(#a, ypa) and a {2n — \)-dimensional 
hypersurface element S2n-i(&a, h) possess only the single invariant 

(19) * Œ i . fog ["- £ laVa/Jt, kauX 
2% L a=l ' a-1 J 

This is Kasner's pseudo-angle between e and S^n-i. It represents the 
actual angle 0 between e and the curve element e* in Stn-i such that e and 
e* are on the same two-dimensional isocline. 

In the next and final section, we shall show that the pseudo-angle 
characterizes the pseudo-conformal group G. It is remarked that this 
is a direct generalization of the fact that the group of functions of a 
single complex variable is identical with the conformai group of the 
plane. 

8. Characterization of the pseudo-conformal group G by the 
pseudo-angle. We shall prove the following fundamental theorem 
which is essentially Kasner's characterization in 2n dimensions. 

THEOREM 4. A transformation of 2n-dimensional euclidean space R%n 

is pseudo-conformal if and only if it preserves the pseudo-angle defined 
{in cartesian coordinates) by 

n 

]£ (Fxadxa + Fyadya) 
(20) 6 = arc tan — ; 

n 
Z ) (F*«dy« - FyccdXc) 
a~l 

between any curve C:xa~xa{t), y*~ya(t), and any (2n — l)-dimensional 
hypersurface Smn-i) • F(xi, #2, • • • , xn; yi, y2, • • • , yn) = 0 at their com­
mon point of intersection. 

Any arbitrary transformation T with nonvanishing jacobian in­
duces at any given point a general projectivity in 2(2n-i) which in 
minimal curve element coordinates may be written as 

n n 

( 2 1 ) p $ « = Yu (<*afri>fi + b'af&fl), P*a = Z ) , ( * « ^ + a t f * / 0 -
0 -1 j8-l 

Also this projectivity in hypersurface element coordinates may be 
written as 
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(22) <J~kp = V (aapKa + dapLa), vlfi = V (bapLa + bapKa), 
a=»l a « l 

where the determinants of the coefficients are not zero. 
Now let T preserve the pseudo-angle (20). In minimal coordinates, 

this may be written in the form (19). Then the fraction of (19) is 
equal to the same fraction with the small letters replaced by the capi­
tal letters. Upon eliminating <£«, ^«, kp, lp by means of (21) and (22) 
in this resulting identity, we find 

n n 

S La{bap\j/p + aap$p) V }pà(bytLy + byiKy) 
(23) J±± = ^ i ^ 

V Ka{aap<i)p + b'ap\l/p) V <j)B(ay8Ky + ay&Ly) 
«,0=1 7,8=1 

Now this must be an identity for all (#«, ^«, Kai La). Placing the 
coefficients of <j>l and \f/p equal to zero, we find 

^ aapLa J2 (aypKy + a'ypLy) = 0, 
(24) U 7 J U ^ J 

[ Ê » ^ « ] [ £ Q>t*Ly + bypKy)] = 0. 

These are identities in K and L. Now the second factors of each of 
these equations cannot identically vanish for then the determinant 
of (21) or (22) is zero. Therefore the preceding equations will be 
identities if and only if the first factors are identically zero. There­
fore <Xa/3 = &a/3 = 0 for all a, j8 = 1, 2, • • • , n. 

Since ^ = ^ = 0, our transformation (21) or (22) is induced 
pseudo-conformal. Our Theorem 4 is therefore proved, for this result 
is valid at any fixed point. 
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