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RICHARD BELLMAN 

In Note LXVI of his Notes on some points in the integral calculus 
[l],1 Hardy proves the following theorem. 

THEOREM 1 (HARDY). If ai, a2, • • • , an, • • • are the Fourier con­
stants of a function of Lp, p^l, then A\, A2, • • • , An, • • • are also the 
Fourier constants of a function of Lp, where An=

zn"~^J[ali. 

Hardy restricts the class of functions considered to even functions, 
with mean value over a period zero, and the same restriction shall be 
observed here. 

We wish to prove a "dual" to Theorem 1, namely: 

THEOREM 2. If b\, b2, • • • , bn, • • • are the Fourier constants of a 
function, g(x), of Lp, p>l, then Bi, B2, • • • , Bn, • • • are also the 
Fourier constants of a function, G(x), of Lp, where Bn=^2^bkk^1, and if 
f(x)^^^2an cos nx is any function of Lp', F(x)~%2?An cos nx, then, 
l/p+l/p' = l, 

J f(x)G(x)dx + f F{x)g{x)dx = 0. 
0 J 0 

There is a difference between the theorems. The case p — l is 
omitted in Theorem 2, and necessarily, since gix)^^^ cos nx/log n 
belongs to L, but the corresponding Bn do not even exist. 

Hardy's method depends upon an explicit representation of the 
function F(x) in terms oîf(x). In the case of the theorem to be proven, 
this representation does not seem to facilitate matters. The method 
used will depend upon some general theorems on Fourier series, to­
gether with the original theorem of Hardy. For the case p = 2, the 
proof is immediate, since it can be shown that the convergence of bl 
implies the convergence of Bl (this result is also due to Hardy, and 
was the origin of this type of theorem). In particular, this series con­
verges for a function belonging to Lp, for p*z2, and thus there exists 
a function of L2, having the Bn as Fourier coefficients. 

The method of proof depends upon the observation that, purely 
formally, partial summation yields 
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1 1 

The justification of this will constitute the principal part of the proof. 
Three lemmas will be required. 

LEMMA 1 [2]. A necessary and sufficient condition that the series 
^?an cos nx should be a Fourier series of a function of Lp, p>l,is that 
for every g(x) belonging to Lp' (l/p+l/p' = l) with Fourier coefficients 
a^y the series ^2?anan should be finite (C, 1). 

A series is finite (C, 1) when the arithmetic mean of its partial sums 
is bounded. 

LEMMA 2. IfiJW^^ c o s nx ^s a function of Lp, p>l, then 

2>n = 0(WP). 

PROOF OF LEMMA 2. 

N 

23^ 
1 

N i / . T r N -i 

22 cn = — I B(x) 23 cos nx dx. 
1 7T J o L l J 

Using Holder's inequality 

— I | H(x) \pdx I 22 cos nx \ dx\ 

r r*\ N \p' "l1/p' 

— o\ I 2 2 c o s # # <J# 
r rr I sin. iv* \p' ~\l/p' 

8 8 0 I \dx\ =0(Nlip). 
Lt/o I « I J 

This finishes the proof of the lemma. 

LEMMA 3.2 If H{x)<^£j[cn cos nx belongs to Lp', p>l, then 
oo r I 

iNT W 
= 0(N-"P). 

PROOF OF LEMMA 3. Let 22 r^—^» then 

Cp Sy 

n V 1, K " T 1 ) 

2 The above proof of Lemma 3 and a part of the proof of Theorem 2 are due to 
Professor O. Szâsz and are simpler and more elegant than the original. 
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By Lemma 2, ^m==0(m1/p')» hence m-^m-^O, and 

n n viy + 1) 

= OC»1^'-1) = 0(rrliv). 

PROOF OF THEOREM 2. An and Bnif(x), g(x), F(x), G(x) are defined 
as in Theorems 1 and 2. We divide the proof into three parts. The 
first part will consist of showing that G(x) belongs to Lp

f p> 1, when­
ever g(x) does. In virtue of Lemma 1, it is sufficient to show 

n 

2 Bvav = 0(1) as n —> a>, 
i 

where g(ff)~X)&n cos nx is a function of Lp, a.ndf(x)~£an cos w# is a 
function of Lp'. 

By partial summation 

(1) 2 - ^ v = -SnZ) dv - ]£ i4„6„. 
1 1 1 

Using Theorem 1, F(x)~£An cos nx belongs to Lp', and thus, using 
the generalized Parseval theorem, ^^AJbv is convergent. Further­
more, ̂ ïay = 0(n1/p'), by Lemma 2, and Br = 0(n~llp'), by Lemma 3. 
Hence 

£ n È a, = OWMtr1'*') = 0(1), 
i 

and thus G(x) belongs to Lp. 
The second part consists of showing that ^T,?Bvav converges. This 

is immediate by the generalized Parseval theorem (Hausdorff-Young 
theorem) since G(x) belongs to Lp, f(x) to Lp'. 

The third part consists of showing that ^>2?Anbn= -"^ianBn and 
using (1) this is true if, and only if, Br£?av = o(l). 

We have to consider two cases. 
Case 1. ƒ(*) belongs to Lp, Kp£2. Then, by the Hausdorff-Young 

theorem, 2 | an|p' converges, and thus 

J2an = o(N1**). 

Case 2. f(x) belongs to Lp, p>2, and thus g(x) belongs to Z>\ 
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1 <p'^2. Then, as before, ]T)| bn\
p converges, and this entails 

= oiN-1'»). Z -
N n 

Thus for all p>l, 

#n X, <M = <( r = ö(l). 
i l lO^-1/»)^1/*)/ 

This finishes the proof of Theorem 2. 
I t is interesting to see how these results arise naturally in dealing 

with Fourier integrals. The processes will be purely formal, although 
they could be justified by similar methods. 

ƒ» 00 

F(x) cos xtdx, 
o 

/

• * s f °° , sin xt r °° / r °° F(u) \ 
f{t)dt = I F(x) dx = t I I I du J cos xt dx. 

o •/o x J o \J x u / 

The last result is obtained by integrating by parts, assuming that 
the integrated term drops out. Thus 

I f ' C* ( C" p(u) v 
— I f(t)dt = I ( I du ) cos atf d#. 

Similarly 

, T*-J. «4 J. —J* 
/

» °° r f °° cos w "I 

0 L •/ xt U J 
Integrating the last expression by parts, and assuming the integrated 
part vanishes, there results 

/

°° ƒ 00 f °° r l f * n 
d/ = I — I F{u)du cos #/ d#. 
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