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Introduction. Recent developments of symbolic logic have con­
siderable importance for mathematics both with respect to its phi­
losophy and practice. That mathematicians generally are oblivious to 
the importance of this work of Gödel, Church, Turing, Kleene, Rosser 
and others as it affects the subject of their own interest is in part due 
to the forbidding, diverse and alien formalisms in which this work is 
embodied. Yet, without such formalism, this pioneering work would 
lose most of its cogency. But apart from the question of importance, 
these formalisms bring to mathematics a new and precise mathemati­
cal concept, that of the general recursive function of Hërbrand-Gödel-
Kleene, or its proved equivalents in the developments of Church and 
Turing.1 It is the purpose of this lecture to demonstrate by example 
that this concept admits of development into a mathematical theory 
much as the group concept has been developed into a theory of 
groups. Moreover, that stripped of its formalism, such a theory ad­
mits of an intuitive development which can be followed, if not indeed 
pursued, by a mathematician, layman though he be in this formal 
field. It is this intuitive development of a very limited portion of a 
sub-theory of the hoped for general theory that we present in this 
lecture. We must emphasize that, with a few exceptions explicitly so 
noted, we have obtained formal proofs of all the consequently mathe­
matical theorems here developed informally. Yet the real mathemat­
ics involved must lie in the informal development. For in every 
instance the informal "proof" was first obtained; and once gotten, 
transforming it into the formal proof turned out to be a routine chore.2 

We shall not here reproduce the formal definition of recursive func­
tion of positive integers. A simple example of such a function is an 

An address presented before the New York meeting of the Society on February 26, 
1944, by invitation of the Program Committee; received by the editors March 25, 
1944. 

1 For "general recursive function" see {9] ([8] a prerequisite), [12] and [11]; for 
Church's "X-defineability, " [l] and [6]; for Turing's "computability," [24] and the 
writer's related [18]. To this may be added the writer's method of "canonical systems 
and normal sets" [19 ]. See pp. 39-42 and bibliography of [6 ] for a survey of the litera­
ture and further references. Numbers in brackets refer to the bibliography at the end 
of the paper. 

1 Our present formal proofs, while complete, will require drastic systématisation 
and condensation prior to publication. 
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arbitrary polynomial P(#i, x%, • • • , a?*), with say non-negative in^ 
tegral coefficients, and not identically zero. If the #'s are assigned 
arbitrary positive integral values expressed, for example, in the arabic 
notation, the algorithms for addition and multiplication in that nota­
tion enable us to calculate the corresponding positive integral value 
of the polynomial. That is, P(xi, X2) * * * t Xn ) is an effectively calculable 
function of positive integers. The importance of the technical concept 
recursive function derives from the overwhelming evidence that it is 
coextensive with the intuitive concept effectively calculable function.8 

A set of positive integers is said to be recursively enumerable if there 
is a recursive function f{x) of one positive integral variable whose 
values, for positive integral values of x, constitute the given set. The 
sequence ƒ (1), ƒ (2), ƒ (3), • • • is then said to be a recursive enumeration 
of the set. The corresponding intuitive concept is that of an effectively 
enumerable set of positive integers. To prepare us in part for our in­
tuitive approach, consider the following three examples of recursively 
enumerable sets of positive integers. 

(a): 12,22,32, . . . . 

(b): 1, 2, 2 ^ , 21+2+2l+2, • • • . 

(c): 12 ,22 ,3*, . . . 

I8, 28, 38, . • • 

I4, 2\ 3', : • • 

In the first example, the set is given by a recursive enumeration 
thereof via the recursive function x2. In the second example, the set 
is generated in a linear sequence, each new element being effectively 
obtained from the elements previously generated, in this case by 
raising 2 to the power the sum of the preceding elements. The set 
is effectively enumerable, since the nth element of the sequence can 
be found, given n, by regenerating the sequence through its first n 
elements. In the third example, we rather imagine the positive in­
tegers 1, 2, 3, • • • generated in their natural order, and, as each 
positive integer n is generated, a corresponding process set up which 
generates w2, w8, w4, • • • , all these to be in the set. Actually, the stand­
ard method for proving that an enumerable set of enumerable sets îè 
enumerable yields an effective enumeration of the set. 

8 See Kleene [13, footnote 2]. In the present paper, "recursive functionn means 
"general recursive function.n 
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Several more examples would have to be given to convey the writ­
er's concept of a generated set, in the present instance of positive 
integers. Suffice it to say that each element of the set is at some time 
written down, and earmarked as belonging to the set, as a result of 
predetermined effective processes. It is understood that once an ele­
ment is placed in the set, it stays there. The writer elsewhere has re­
ferred to a generalization which may be restated every generated set of 
positive integers is recursively enumerable.4 For comparison purposes 
this may be resolved into the two statements: every generated set is 
effectively enumerable, every effectively enumerable set of positive 
integers is recursively enumerable. The first of these statements is 
applicable to generated sets of arbitrary symbolic expressions; their 
converses are immediately seen to be true. We shall find the above 
concept and generalization very useful in our intuitive development. 
But while we shall frequently say, explicitly or implicitly, "set so 
and so of positive integers is a generated, and hence recursively 
enumerable set," as far as the present enterprise is concerned that 
is merely to mean "the set has intuitively been shown to be a gen­
erated set; it can indeed be proved to be recursively enumerable." 
Likewise for other identifications of informal concepts with corre­
sponding mathematically defined formal concepts. 

At a few points in our informal development we have to lean upon 
the formal development. The latter is actually yet another formalism, 
due to the writer [19] but proved completely equivalent to that of 
general recursive function. It will suffice to give the equivalent of 
"recursively enumerable set of positive integers" in this development. 

A positive integer n is represented in the most primitive fashion 
by a succession 11 • • • 1 of n strokes. For working purposes, we in­
troduce the letter 6, and consider "strings" of l's and 6's such as 
1161661. An operation on such strings such as "616P produces Plbbl" 
we term a normal operation. This particular normal operation is ap­
plicable only to strings starting with 616, and the derived string is 
then obtained from the given string by first removing the initial 616, 
and then tacking on 1661 at the end. Thus 6166 becomes 61661. "gP 
produces Pg'" is the form of an arbitrary normal operation. A system 
in normal form, or normal system, is given by an initial string A of 
l's and 6's, and a finite set of normal operations "g<P produces Pgl," 
i = l, 2, • • • , /Jt. The derived strings of the system are A and all 
strings obtainable from A be repeated applications of the p normal 

4 See [19, p. 201 and footnote 18]. In this connection note Kleene's use of the word 
"Thesis" in [14, p. 60]. We still feel that, ultimately, "Law" will best describe the 
situation [18]. 
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operations. Each normal system uniquely defines a set, possibly null, 
of positive integers, namely the integers represented by those derived 
strings which are strings of l's only. It can then be proved that every 
recursively enumerable set of positive integers is the set of positive 
integers defined by some normal system, and conversely.6 We here, 
as below, arbitrarily extend the concept recursively enumerable set to in* 
elude the null set. 

By the basis J? of a normal system, and of the recursively enumer­
able set of positive integers it defines, we mean the string of letters 
and symbols here represented by 

A ; gtP produces Pgl, • • • , g^P produces Pgj. 

When meaningfully interpreted, B determines the normal system, 
and recursively enumerable set of positive integers, in question. Each 
basis is but a finite sequence of the symbols 1, &, P, the comma, semi­
colon and the letters of the word "produces" The set of bases is there­
fore enumerably infinite, and can indeed be effectively generated in 
a sequence of distinct elements 

0: Bi, $2, #3, • • • . 

Since each Bi defines a unique recursively enumerable set of positive 
integers and each such set is defined by at least one B», 0 is also an 
ordering of all recursively enumerable sets of positive integers, though 
each set will indeed recur an infinite number of times in 0. We may 
then say, in classical terms, that whereas there are 2^° arbitrary sets 
of positive integers, there are but K o recursively enumerable sets. 

By the decision problem of a given set of positive integers we mean 
the problem of effectively determining for an arbitrarily given posi­
tive integer whether it is, or is not, in the set. While, in a certain sense, 
the theory of recursively enumerable sets of positive integers is 
potentially as wide as the theory of general recursive functions, the 
decision problems for such sets constitute a very special class of deci­
sion problems. Nevertheless they are important, as is shown by the 
following special and general examples. 

One of the problems posed by Hilbert in his Paris address of 1900 
[10, problem 10] is the problem of determining for an arbitrary di-
ophantine equation with rational integral coefficients whether it has, 
or has not, a solution in rational integers. If the variables in a 

6 We have thus restricted the normal operations and normal systems of [19] be­
cause of the following result. If in the initial string and in the normal operations of a 
normal system with primitive letters 1, a(, • • • , a J, each a<, i « l , • • • , M'> is re­
placed by b\ • • • lb with * Ts, a normal system with primitive letters 1, b results, 
defining the same set of strings on 1 only as the original normal system. 
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diophantine equation be chosen from a given enumerably infinite 
set of variables, it is clear that the set of diophantine equations is 
enumerably infinite. Indeed they can be effectively put into one-one 
correspondence with the set of positive integers. Since for any one di­
ophantine equation, and assignment of rational integral values to its 
variables, it can be effectively determined whether or no the equa­
tion is satisfied by those values, the set of diophantine equations 
having rational integral solutions can be generated. The correspond­
ing integers under the above one-one correspondence can then also 
be generated, and, indeed, constitute a recursively enumerable set of 
positive integers.6 And under that correspondence, Hubert's problem 
is transformed into the decision problem of that recursively enumer­
able set. 

The assertions of an arbitrary symbolic logic7 constitute a gener­
ated set A of what may be called symbol-complexes or formulas. We 
assume that A is a subset of an infinite generated set E of symbol-
complexes, which in one case may be the set of meaningful enuncia­
tions of the logic, in another the set of all symbol-complexes of a 
given mode of symbolization. The decision problem of the logic, more 
precisely its deducibility problem [3]i is then the problem of deter­
mining of an arbitrary member of E whether it is, or is not, in A. 
Granting that every generated set is effectively enumerable, the mem­
bers of E can be effectively set in one-one correspondence with the 
set of positive integers. The positive integers corresponding to the 
members of A then constitute a generated, and hence, under our gen­
eralization, a recursively enumerable set of positive integers. And un­
der that correspondence the decision problem of the symbolic logic 
is transformed into the decision problem of this recursively enumer­
able s^t of positive integers. 

Closely related to the technical concept recursively enumerable set 
of positive integers is that of a recursive set of positive integers. This 
is a set for which there is a recursive function ƒ(x) such that fix) is 
say 2 when x is a positive integer in the set, 1 when x is a positive 
integer not in the set. We may also make this the definition of the 
decision problem of the set being recursively solvable. For 2 and 1 may 
be regarded as the two possible truth-values, true, false, of the propo­
sition "positive integer x is in the set," and the definition of recursive 
set is equivalent to this truth-value being recursively calculable for 
all positive integers x. If then recursive function is coextensive with 

6 In view of [17] we inadvertantly carried through our formal verification with 
"rational integral solution" replaced by "positive integral solution.n 

7 See Church [5, p. 225] for our omitting the qualifying "unitary." 
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effective calculability, recursive solvability is coextensive with solva­
bility in the intuitive sense* In particular, the decision problem of a 
recursively enumerable set would be solvable or unsolvable according 
as the set is, or is not, recursive. More generally than in our two illus­
trations, through the more precise mechanism of Gödel repre­
sentations [8], a wide variety of decision and other problems are 
transformed into problems about positive integers; and whether 
those problems are, or are not, solvable in the intuitive sense would 
be equivalent to their being, or not being, recursively solvable in the 
precise technical sense. 

Gödel's classic theorem on the incompleteness and extendibility of 
symbolic 1 ogics [8] in all but wording led him to the recursive un-
solvability of a generalization of the above problem of Hubert [8, 9, 
22]. Church explicitly formulated the concept of recursive unsolva-
bility, and arrived at the unsolvability of a number of problems; cer­
tainly he proved them recursively unsolvable [l-4]. The above prob­
lem of Hubert begs for an unsolvability proof (see [17]). Like the 
classic unsolvability proofs, these proofs are of unsolvability by means 
of given instruments. What is new is that in the present case these in­
struments, in effect, seem to be the only instruments at man's dis­
posal. 

Related to the question of solvability or unsolvability of problems 
is that of the reducibility or non-reducibility of one problem to an­
other. Thus, if problem Pi has been reduced to problem P2, a solution 
of P2 immediately yields a solution of Pi, while if Pi is proved to be 
unsolvable, P2 must also be unsolvable. For unsolvable problems the 
concept of reducibility leads to the concept of degree of unsolvability, 
two unsolvable problems being of the same degree of unsolvability 
if each is reducible to the other, one of lower degree of unsolvability 
than another if it is reducible to the other, but that other is not 
reducible to it, of incomparable degrees of unsolvability if neither 
is reducible to the other. A primary problem in the theory of recur­
sively enumerable sets is the problem of determining the degrees of 
unsolvability of the unsolvable decision problems thereof. We shall 
early see that for such problems there is certainly a highest degree 
of unsolvability. Our whole development largely centers on the single 
question of whether there is, among these problems, a lower degree of 
unsolvability than that, or whether they are all of the same degree 
of unsolvability. Now in his paper on ordinal logics [26, section 4], 
Turing presents as a side issue a formulation which can immediately 
be restated as the general formulation of the "recursive reducibility" 
of one problem to another, and proves a result which immediately 
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generalizes to the result that for any "recursively given" unsolvable 
problem there is another of higher degree of unsolvability.8 While his 
theorem does not help us in our search for that lower degree of un­
solvability, his formulation makes our problem precise. It remains a 
problem at the end of this paper. But on the way we do obtain a 
number of special results, and towards the end obtain some idea of 
the difficulties of the general problem. 

1. Recursive versus recursively enumerable sets. The relationship 
between these two concepts is revealed by the following 

THEOREM. A set of positive integers is recursive when and only when 
both it and its complement with respect to the set of all positive integers 
are recursively enumerable.9 

For simplicity, we assume both the set S and its complement "S to 
be infinite. If, then, S is recursive, there is an effective method for 
telling of any positive integer n whether it is, or is not, in S. Generate 
the positive integers 1, 2, 3, • • • in their natural order, and, as a 
positive integer is generated, test its being or not being in S. Each 
time a positive integer is thus found to be in S, write it down as be­
longing to S. Thus, an effective process is set up for effectively enu­
merating the elements of S. Hence, S is recursively enumerable. 
Likewise S can be shown to be recursively enumerable. 

Conversely, let both S and 3 be recursively enumerable, and let 
ni, «2i wa, • • • be a recursive enumeration of S; m%, m%, m9, • • • ,of 3. 
Given a positive integer n, generate in order #i, mu n2, m*, nz, m*, 
and so on, comparing each with n. Since n must be either in S or in 3, 
in a finite number of steps we shall thus come across an #i or m; 
identical with n, and accordingly discover n to be in S, or 3. An effec­
tive method is thus set up for determining of any positive integer n 
whether it is, or is not, in S. Hence, S is recursive. 

COROLLARY. The decision problem of a recursively enumerable set is 
recursively solvable when and only when its complement is recursively 
enumerable. 

For then and only then is the recursively enumerable set recursive. 
I t is readily proved that the logical sum and logical product of two 
8 Both our generalization of his formulation and of his theorem have been carried 

through, rather hastily, by the formalism of [19], without, as yet, an actual equiva­
lence proof. It may be that Tarski's Theorem 9.1 [23] can be transformed into a like 
absolute theorem. 

9 The only portion of this theorem we can find in the literature is Rosser's Corol­
lary II [20, p. 88]. 
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recursively enumerable sets are recursively enumerable, the comple­
ment of a recursive set, and the logical sum, and hence logical prod­
uct, of two recursive sets are recursive. 

Clearly, any finite set of positive integers is recursive. For if 
fti, #2, • • • , ft, are the integers in question, we can test ft being, or not 
being, in the set by directly comparing it with fti, ft2, • • • , ft*.10 Like­
wise for a set whose complement is finite. For arbitrary infinite sets 
we have the following result of Kleene [12 ]. An infinite set of positive 
integers is recursive when and Only when it admits of a recursive enumer­
ation without repetitions in order of magnitude. Indeed, if fti, ft2, fts, • • • 
is a recursive enumeration of S without repetitions in order of mag­
nitude, all ft/s beyond the ftth must exceed ft. Hence we can test ft 
being, or not being, in 5 by generating the first ft members of the 
given recursive enumeration of S, and seeing whether n is, or is not, 
one of them. Conversely, if infinite S is recursive, the recursive enu­
meration thereof we set up in the proof of our first theorem is of the 
elements of S without repetition, and in order of magnitude. 

A direct consequence of the first half of the last result is the follow­
ing 

THEOREM. Every infinite recursively enumerable set contains an in­
finite recursive set. 

For, if fti, ft2, «a, • • • is a recursive enumeration of an infinite set 5, 
for each ni there must be, in this sequence, a later ft/>ft»\ Hence, 
generate the elements fti, ft2, ft?, • • > in order, and let m% =*nu mi**niv 

the first ftt- greater than fti, mz — niv the first m beyond ft»2 greater 
than ftt-2, and so on. The sequence mi, m%> mz, • • • is then a recursive 
enumeration of a subset of S without repetitions in order of magni­
tude. That subset is therefore infinite, and recursive. 

Basic to the entire theory is the following result we must credit to 
Church, Rosser, Kleene, jointly [l, 20, 12]. 

THEOREM. There exists a recursively enumerable set of positive in­
tegers which is not recursive.11 

By our first theorem this is equivalent to the existence of a recur­
sively enumerable set of positive integers whose complement is 

10 The mere existence of a general recursive function defining the finite set is in 
question. Whether, given some definition of the set, we can actually discover what the 
members thereof are, is a question for a theory of proof rather than for the present 
theory of finite processes. For sets of finite sets the situation is otherwise, as seen in 
§11. 

u In each of our existence theorems we show how to set up the basis of the set in 
question—at least, the corresponding formal proof does exactly that. 
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not recursively enumerable. Generate in order the distinct bases 
Bu -82» Bz, • • • of all recursively enumerable sets of positive integers 
as mentioned in the introduction, and keep track of these bases as 
the first, second, third, and so on, in this enumeration 0. As the nth 
basis Bn is generated, with w = l, 2, 3, • • • , set going the processes 
whereby the corresponding recursively enumerable set is generated, 
and whenever n is thus generated by 5», place « in a set U. Being a 
generated set of positive integers, U is recursively enumerable. A 
positive integer n> then, is, or is not, in U according as it is, or is not, 
in the nth recursively enumerable set in 0 considered as an ordering 
of all recursively enumerable sets. Hence, n is, or is not, in 17, the 
complement of £7, according as it is not, or is, in the nth set in 0. 
We thus see that U differs from each recursively enumerable set in 
the presence or absence of at least one positive integer. Hence 77 is 
not recursively enumerable. 

COROLLARY. There exists a recursively enumerable set of positive in­
tegers whose decision problem is recursively unsolvable. 

Taken singly, finite sets, or sets whose complements are finite, are 
rather trivial examples of recursive sets. On the other hand, if we 
define two sets of positive integers to be abstractly the same if one can 
be transformed into the other by a recursive one-one transformation 
of the set of all positive integers into itself, then all infinite recursive 
sets with infinite complements are abstractly the same. Our theory 
being essentially an abstract theory of recursively enumerable sets, 
our interest therefore centers in recursively enumerable sets that are 
not recursive. Such sets, as well as their complements, are always 
infinite. We do not further pursue the question of two sets being ab­
stractly the same, for that is but a special case of each set being one-
one reducible to the other (§4). 

2. A form of GödePs theorem. Given any basis 3 , and positive 
integer n, the couple (3, n) may be used to represent the proposition, 
true or false, an is in the set generated by JB." By interlacing the proc­
ess for generating the distinct bases in the sequence Bx, B2, Bz, • • • 
and the process for generating the positive integers in the sequence 
1, 2, 3, * • • by the addition of Ts, we can effectively generate the 
distinct couples (J5, n) in thç single infinite sequence 

0': {Bly 1), (£2, 1), (Bu 2), (£3, 1), (£,, 2), (Bu 3), • • • . 

On the one hand, the set of all couples (B, n) is thus a generated set 
of expressions which we shall call £ . On the other hand, Of leads to 
an effective 1-1 correspondence between the members of E and the 
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set of positive integers, (J3, n) corresponding to m if (£, n) is the 
wth member of 0'. We may call m the Gödel representation12 of 
(B, n). Given a generated subset of E, the Gödel representations of its 
members will constitute a generated set of positive integers, and con­
versely. Thus, in the former case we can generate the members of the 
subset of Et and, as a couple (B, n) is generated, find its Gödel repre­
sentation m by regenerating 0' . The set of these w's is thus a gener­
ated set. Likewise for the converse. If, therefore, we formally define 
a subset of E to be recursively enumerable if the set of Gödel repre­
sentations of its members is recursively enumerable,18 we can con­
clude that every generated subset of E is recursively enumerable, and, 
of course, conversely. Similarly for a like formal definition of a recur­
sive subset of E. 

While JS is just the set of couples (2?, w), it may be interpreted as 
the set of enunciations "n is in the set generated by B* The subset 
T of E consisting of those couples (J5, n) for which n is in the set 
generated by B may then be interpreted as the set of true propositions 
in £ , while T, the complement of T with respect to £, consists of the 
false propositions in E. 

Actually, T itself can be generated as follows. Generate Bu B*, 
J58, • • • in order. As a B is generated, set up the process for generat­
ing the set of positive integers determined by 5 , and, whenever a 
positive integer n is thus generated, write down the couple (23, n). 
Each (B, n) for which n is in the set generated by B will thus be writ­
ten down, and conversely. This generated set of (5, n)*s is then T. 
We therefore conclude that T is recursively enumerable. 

Now let F be any recursively enumerable subset of T. If (5, n) is 
in F, it is in T, and hence n is certainly not in the set generated by 
5 . NOW generate the members of F, and if (J5, n) is thus generated, 
find the nth member Bn of 0:Bu B%, J58, * • • , and if Bn is B, place n 
in a set of positive integers 5V Since <So is thus a generated set of 
positive integers, it is recursively enumerable. It will therefore be 
determined by some basis J3. Let this basis be in the *>th in 0, that is, 
let the basis be J3„ and form the couple (BP, v). Now by construction, 
So consists of those members of F of the form (Bm n). Suppose that 
{By, v) is in F. Then, on the one hand, proposition (B„ v) being false, 

12 Rather is the Gödel representation in [8] not just an effectively corresponding 
positive integer, but one which, when expressed according to a specific algorithm, is 
"formally similar, " in the sense of Ducasse [7, p» 51], to the symbolic expression 
represented. 

18 In our own development [19], "recursively enumerable subset of En is defined 
directly as a normal subset of B, or rather of the set of symbolic representations of the 
members of E. 
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v would not be in the set generated by Bv, that is (1): v would not be 
in So. But (J3„ v) being of the form (J3«, w), (2): v would be in So. 
Our assumption thus leading to a contradiction, it follows that (Bv, v) 
ü not in F. But v can only be in S0 by (BVf v) being in F. Hence, v is 
not in So. Finally, (£„, v) as proposition says that v is in S0. The 
proposition (By, v) is therefore false, that is (JB„ v) is in T. 

For any recursively enumerable subset F of T there is then always 
this couple (5„, v) in T\ but not in F. On the one hand, then, T can 
never be F. Hence, T is not recursively enumerable. By the definitions 
of this section, and the first theorem of the last, it follows that T, 
while recursively enumerable, is not recursive. By the decision problem 
of T we mean the problem of determining for an arbitrarily given 
member of E whether it is, or is not, in T. But that can be interpreted 
as the decision problem for the class of recursively enumerable sets 
of positive integers, that is, the problem of determining for any arbi­
trarily given recursively enumerable set, that is, arbitrarily given 
basis B of such a set, and arbitrary positive integer n whether n is, 
or is not, in the set generated by B. We may therefore say that the 
decision problem for the class of all recursively enumerable sets of positive 
integers is recursively unsolvable, and hence, in all probability, unsolva-
ble in the intuitive sense. 

On the other hand, since (JB„, v) of T is not in F, T and F together 
can never exhaust E. Now T, or any recursively enumerable subset 
T' of JT, in conjunction with F may be called a recursively generated 
logic relative to the class of enunciations E. For the appearance 
of (5, n) in T' assures us of the truth of the proposition ((n is in 
the set generated by B" while its presence in F would guarantee 
its falseness. We can then say that no recursively generated logic rela­
tive to E is complete, since F alone will lead to the (Bvt v) which is 
neither in T' nor in% F. That is, (Bvt v) is undecidable in this logic. 
Moreover, if, with a given "basis" for F, the above argument is car­
ried through formally,14 the recursively enumerable So obtained above 
will actually be given by a specific basis B which can be constructed 
by that formal argument. Having found this 5 , we can then re­
generate 0:Bi, J52, J3$, • • * , until B is reached, and thus determine 
the v such that B — Bv. That is, given the basis of F, the {Bvt v) in T 
and not in F can actually be found. If then we add this (J?„ v) to F, a 
wider recursively enumerable subset F' of T results. We may then say 
that every recursively generated logic relative to E can be extended. 
Outwardly, these two results, when formally developed, seem to be 

14 Here, the basis of F may be taken to be the basis of the recursively enumerable 
set of Gödel representations of the members of F. But see the preceding footnote. 
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Gödel's theorem in miniature. But in view of the generality of the 
technical concept general recursive function, they implicitly, in all 
probability, justify the generalization that every symbolic logic is 
incomplete and extendible relative to the class of propositions con­
stituting E.16 The conclusion is unescapable that even for such a 
fixed, well defined body of mathematical propositions, mathematical 
thinking is, and must remain, essentially creative. To the writer's 
mind, this conclusion must inevitably result in at least a partial 
reversal of the entire axiomatic trend of the late nineteenth and 
early twentieth centuries, with a return to meaning and truth as being 
of the essence of mathematics. 

3. The complete set K; creative sets. Return now to the effective 
1-1 correspondence between the set E of distinct (B, n)'s and the set 
of positive integers obtained via the effective enumeration 0' of J3. 
Since T is a recursively enumerable subset of JS, the positive integers 
corresponding to the elements of T constitute a recursively enumer­
able set of positive integers, K. We shall call K the complete set.1* 
Since T is not recursively enumerable, "K, which consists of the posi­
tive integers corresponding to the elements of T, is not recursively 
enumerable. Now let B be the basis of a recursively enumerable sub­
set a of ~K. The elements of JS corresponding to the members of a con­
stitute, then, a recursively enumerable subset F of T. Find then the 
(J3„ v) of T not in F, and, via 0', the positive integer n correspond­
ing to (Bv, v). This n will then be an element of "K not in a. 

Actually, we have no general method of telling when a basis B 
defines a recursively enumerable subset of ÏT. Indeed, the above 
method will yield a unique positive integer n for any basis B of a re­
cursively enumerable set a of positive integers. However, when a is a 
subset of "K, n will also be in "K, but not in a. 

Furthermore, even the formal proof of this result merely gives 
an effective method for finding n, given B. But this method itself 
can be formalized, so that, as a result, n is given as a "recursive 
function of J3." This can mean that a recursive function/(w) can be 
set up such that n =ƒ(#*) where B=*Bm. We now isolate this property 
of K by setting up the 

DEFINITION. A creative set C is a recursively enumerable set of posi­
tive integers for which there exists a recursive function giving a unique 

M See Kleene's Theorem XIII in [12] for a mathematically stateable theorem ap­
proximating the generality of our informal generalization. 

16 aA complete set" might be better. Just how to abstract from JÇ the property of 
completeness is not, at the moment, clear. By contrast, see "creative set* below. 
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positive integer n for each basis B of a recursively enumerable set of 
positive integers a such that whenever a is a subset of Ü, n is also in 
Ü, but not in a. 

THEOREM. There exists a creative set; to wit, the complete set K. 

Actually, the class of creative sets is infinite, and very rich indeed 
as shown by the following easily proved results.17 If C is a creative 
set, and E a recursively enumerable set of positive integers, then if 
E contains Ü, CE is creative, if Ü contains J3, C+E is creative. Re­
sults of §1 enable us actually to construct creative sets according 
to the first method by using E's which are the complements of re­
cursive subsets of C Results of the rest of this section lead to con­
structions using the second method. 

It is convenient to talk as if the n in the definition of a creative set 
were determined by the a thereof instead of by the basis B of a. Clearly 
every creative set C is a recursively enumerable set which is not re­
cursive. For were Ü recursively enumerable, there could be no n in 
Ü not in the recursively enumerable subset Ü of Ü. The decision prob­
lem of each creative set is therefore recursively unsolvable. On the other 
hand, the complement C of any creative set C contains an infinite re­
cursively enumerable set. Recall that every finite set is recursive, and 
hence recursively enumerable. With, then, a of the definition of 
creative set as the null set, find the n = m of Ü "not in a." With a the 
unit set having n\ as sole member, n — ni will be in Ü, and distinct 
from »i. With a consisting of n\ and n^ n**n% will be in Ü, and dis­
tinct from wi and n^ and so on. The set of positive integers wi, n*% 

Ws, • • • is then an infinite generated, and hence recursively enumer­
able, subset of C. 

Actually, with this subset of t as a, a new element nu of U is ob­
tained, and so on into the constructive transfinite. But this process 
is essentially creative. For any mechanical process could only yield 
n's forming a generated, and hence recursively enumerable, subset 
a of C, and hence could be transcended by finding that n of C not 
in a. 

4. One-one reducibility, to K; many-one reducibility. Let Sx and 
S2 be any two sets of positive integers. One of the simplest ways in 
which the decision problem of Si would be reduced to the decision 
problem of S2 would arise if we had an effective method which would 
determine for each positive integer n a positive integer m such that 
n is, or is not, in Si according as m is, or is not, in 3s. For if we could 

17 Of course, all sets abstractly the same as a given creative set, in the sense of §1, 
are creative. Likewise for our later simple and hyper-simple sets. 
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somehow determine whether m is, or is not, in S^ we would deter­
mine n to be, or not be, in Si correspondingly. If "effective method" 
be replaced by "recursive method," we shall say, briefly, that Si is 
then many-one reducible to S2. If, furthermore, different n's always 
lead to different w's, we shall say that Si is one-one reducible to S2.*8 

"Recursive method" here can mean that w=/(w), where ƒ(n) is a 
recursive function. 

THEOREM. The decision problem of every recursively enumerable 
set of positive integers is one-one reducible to the decision problem of the 
complete set K. 

For let B' be a basis of any one recursively enumerable set S'. 
The effective one-one correspondence between all (J?, n)'s and all pos­
itive integers yielded by the effective enumeration 0' of J3, the set 
of all (J3, n)'s, then yields a unique positive integer m for each 
(JB', n), B' fixed, and thus a unique m for each n} different n's yielding 
different w's. Now n is, or is not, in S' according as (5 ' , n) is in T, or 
T, and hence according as m is in K, or "R, whence our result. 

Since K itself is recursively enumerable, we may say that for re­
cursively enumerable sets of positive integers with recursively un-
solvable decision problems there is a highest degree of unsolvability 
relative to one-one reducibilityf namely, that of K. Actually, one-one 
reducibility is a special case of all the more general types of reduci-
bility later introduced, and, though the proof of this is still in the 
informal stage, these latter are special cases of general recursive, 
that is, Turing reducibility. The same result then obtains relative 
to these special types of reducibility and, more significantly, for re­
ducibility in the general sense.19 

We have thus far explicitly obtained two recursively enumerable 
sets with recursively unsolvable decision problems, the U of our first 
section, and K. We may note that a certain necessary and sufficient 
condition for the many-one reducibility of K to a recursively enumer­
able set, the proof of which is still in the informal stage, has as an 
immediate consequence that K is many-one reducible to U. It would 
then follow that K and U are of the same degree of unsolvability rel­
ative to many-one reducibility. 

18 The resulting one-to-one correspondence is then between Si+Si and a subset, 
recursively enumerable indeed, of S2-f-S2. Of course, both Si+Si and 52+52 consti­
tute the set of all positive integers. 

19 It seems rather .obvious that K and the problem of Church [l ] are each at least 
many-one reducible to the other; likewise for the problem of [l] and of [2, 3]. Had 
we verified this in detail, we would have called this highest degree of unsolvability 
of decisions problems of recursively enumerable sets the Church degree of unsolvability. 
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5. Simple sets. It is readily proved that the necessary and suffi­
cient condition that every recursive set be one-one reducible to a 
given recursively enumerable set of positive integers S is that S is 
infinite, and 3 contains an infinite recursively enumerable set. We 
are thus led to ask if there exist sets satisfying the following 

DEFINITION. A simple set is a recursively enumerable set of posi­
tive integers whose complement, though infinite, contains no infinite 
recursively enumerable set. 

We now prove the 

THEOREM. There exists a simple set. 

Recall the set T of all couples (B, n) such that positive integer 
n is in the recursively enumerable set of positive integers determined 
by basis B. Since T is recursively enumerable, we can set up an ef­
fective enumeration 

0": (Biv m), (Bh, n*), (Bh, nz), > -

of its members; The subscript of each B is its subscript in the effec­
tive enumeration 0:Bi, B%, Bz, • • • of all distinct J3's. Now the com­
plement of a set containing no infinite recursively enumerable set is 
equivalent to the set itself having an element in common with each 
infinite recursively enumerable set. Generate then the distinct bases 
J5i, j?2, Bz, • • • , and as a Bi is generated, regenerate the sequence 
0" of (B, n)'s in T, and the first time, if ever, B is Bi, and n is greater 
than 2i, place w i n a set S. The resulting set S is then a generated, 
and hence recursively enumerable, set of positive integers. We pro­
ceed to prove it simple. 

If S' is an infinite recursively enumerable set of positive integers, 
it will be determined by some basis Bi, and will have some element 
m greater than 2i. Since (Bi, m), being then in T, will appear in 0" , 
our construction will place m in S, if some earlier (Bi, n) of 0" has 
not already contributed an element of S' to S. That is, S has an ele­
ment in common with each infinite recursively enumerable 5' . As for 
3 being infinite, note that each Bi contributes at most one element 
to S. The first »B's in 0 therefore contribute at most n elements to 
S. Each Bi with i*>n+l can only contribute to S an element greater 
than 2n+2. Of the first 2n+2 positive integers, at most n are there­
fore in S, and hence at least n+2 are in the consequently infinite 
S.20 

20 n>i can replace n>2i in the above construction, but the proof will then de­
pend on there being an infinite number of bases defining the null set. 
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Having one simple set, the method of our succeeding §8 can be 
modified to yield a rich infinite class of simple sets. Clearly, every 
simple set S is a recursively enumerable set that is not recursive. For 
were S recursive, ~S would be an infinite recursively enumerable sub­
set of 5. The decision problem of each simple set is therefore recursively 
unsolvable. We thus have obtained two infinite mutually exclusive 
classes of recursively enumerable sets with recursively unsolvable 
decision problems, the class of creative sets, and the class of simple 
sets. They are poles apart in that the complements of creative sets 
have a creative infinity of infinite recursively enumerable subsets, 
those of simple sets, not one. 

In passing, we may note that every recursively enumerable set of 
positive integers S with recursively unsolvable decision problem 
leads to an incompleteness theorem for symbolic logics relative to 
the class of propositions n £ S, n an arbitrary positive integer. Creative 
sets S are then exactly those recursively enumerable sets of this 
type each of which admits a universal extendibility theorem as well, 
simple sets S those for which, given S, each logic can prove the falsity 
of but a finite number of the infinite set of false propositions w£S. 

It is readily seen that no creative set C can be one-one reducible to 
a simple set S. For under such a reduction, each infinite recursively 
enumerable subset of C, proved above to exist, would be transformed 
into an infinite recursively enumerable subset of 3?, contradicting 
the simplicity of 5. Simple sets thus offer themselves as candidates 
for recursively enumerable sets with decision problems of lower 
degree of unsolvability than that of the complete set K. Even for 
many-one reducibility the situation is no longer immediately ob­
vious; for an infinite recursively enumerable subset of Ü could thus 
be transformed into a finite subset of 2?, the complement of simple 5, 
without contradiction. However we can actually go much further 
than that. 

6. Reducibility by truth-tables. If Si is many-one reducible to S2, 
positive integer n being, or not being, in S\ may be said to be deter­
mined by its correspondent m being, or not being, in S2 in accordance 
with the truth-table 

(St) m 

+ 
n (Sx) 

+ 

Here, the two signs +> — under m represent the two possibilities m is 
in 5*2, m is not in 52, respectively. And by the sign under n in the 
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same horizontal row as the corresponding sign under m the table in 
the same language tells whether n correspondingly is (+ ) , or is not 
( — ), in Si. The table then says that when m is in S2, n is in Si, when 
m is not in S2, n is not in Si, as required by many-one reducibility. 
Now there are altogether four ways in which n being, or not being, 
in Si can be made to depend solely on m being, or not being, in S2, 
the signs under n being +» — as above; or + , + ; —, —; —, + . If 
then we have an effective method which for each positive integer n 
will not only determine a unique corresponding positive integer m, 
but also one of these four "first order" truth-tables, and if in each 
case the table is such that for the correct statement of membership 
or non-membership of m in S2, it gives the correct statement of mem­
bership or non-membership of n in Si, then the decision problem of 
Si will thus be reduced to the decision problem of S2. For here also, 
given n, if we could somehow determine whether m is, or is not, in S2, 
we could thereby determine which row of the corresponding table cor­
rectly describes the membership or non-membership of m in S2, and 
from that row correctly determine whether n is, or is not, in Si. 

More generally, let there be an effective method which for each 
positive integer n determines a finite sequence of positive integers 
Wi, m2, • • • , mn v as well as the m's depending on n. Let that method 
correspondingly determine for each n a "pth order" truth-table of 
the form 

(Ó2) mi nti • 

t t : 
• • 

• m, 
•• + 

n {Si) 

+ 
• 

Each horizontal row, to the left of the vertical bar, specifies one of 
the 2" possible ways in which the v m/s may, or may not, be in S2, 
to the right of the bar correspondingly commits itself to one of the 
statements n is in Si, n is not in Si. If then for each n that row of 
the corresponding table which gives the correct statements for the 
m's being or not being in S2 also gives the correct statement regarding 
the membership or non-membership of n in Si, the decision problem 
of Si is again thereby reduced to the decision problem of S2. 

If such a situation obtains with "effective method" replaced by 
"recursive method," we shall say that Si is reducible to S2 by truth-
tables. "Recursive method" here can mean that a suitable Gödel 
representation of the couple consisting of the sequence mi, W2, • • • , 
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mv and the truth-table of order v is a recursive function of n. If the 
orders of the truth-tables arising in such a reduction are bounded, 
we shall say that S\ is reducible to Sz by bounded truth-tables. Since 
there are 22" distinct truth-tables of order v, reducibility by bounded 
truth-tables is equivalent to reducibility by truth-tables in which 
but a finite number of distinct tables arise. 

7. Non-reducibility of creative sets to simple sets by bounded 
truth-tables. Let us suppose that creative set C is reducible to simple 
set 5 by bounded truth-tables. Let Ti, T2, • • • , TK be the finite set 
of distinct truth-tables entering into such a reduction. That reduction 
then effectively determines for each positive integer n a finite se­
quence of positive integers mi, m%, • • • , mV} and a unique 7\-, 1 ^ig/c. 

The gist of our reductio-ad-absurdam proof consists in showing 
that under the assumed reduction we can obtain for each natural 
number p a sequence of m's at least p of which are in 5. We then im­
mediately have our desired contradiction. For in each case plkv. The 
finite set of *>'s, the orders of the TVs, being bounded, p cannot then 
be arbitrarily large as stated. 

More precisely we prove by mathematical induction that under the 
assumed reduction the following would be true. For each natural num­
ber p an effective process Hp c&n be set up which will determine for each 
recursively enumerable subset a of Ü an element n of C not in a> and 
which for the corresponding mi, m% • • • , mv and Ti yielded by the 
assumed reduction will correctly designate p of these m's as belonging 
to S. The mode of designation may be assumed to be by specifying 
the sequence of subscripts, ii, i2, • • • , ip, of the m's to be designated, 
with say h<i2< • • • <iP. With the assumed reduction adjoined to 
this process, Iïp then determines for each a in question the quad­
ruplet (n, M, Ti, I), M being the sequence of m's, I the sequence of 
subscripts of the p designated m's. 

For £ = 0, Up is immediately given by the creative character of C 
For that immediately gives us for each recursively enumerable subset 
a of C a definite element n of C not in a. The assumed reduction 
yields the corresponding M and Ti\ and with no members of M desig­
nated as being in 5 , 1 is the null sequence. 

Inductively, assume that we have the processUp for p ~k. Let a be 
any given recursively enumerable subset of Ü, and let (n', M'} Tv, I') 
be the corresponding quadruplet yielded by 11*. Now suppose n is a 
positive integer for which the assumed reduction yields the same 
table Ti> as it did for n', and a sequence of m's, M, consequently of 
the same length as M', having the following property. For each un-
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designated element of M', the correspondingly placed element of If 
is identical with that of M'\ for each element of Mf designated as 
being in S, the corresponding element of M is also in 5. Such an n must 
then be in C along with n'. For that row of TV which correctly tells 
of the m's of M' whether they are, or are not, in S will also be the 
correct row for M. And since in the former case that row must say 
that n'is in C, in the latter case it will say that n is in Ü, and correct­
ly so. We proceed to show how all such n's may be generated. 

We first show how to generate all M's obtainable from M' by re­
placing the designated elements of M' by arbitrary elements of 5. For 
any pne such M, the replacing elements, being finite in number, will 
be among the first N elements, for some positive integer Nt of a 
given recursive enumeration of S. Generate then the positive integers 
1, 2, 3, • • • , and as a positive integer N is generated, generate the 
first N elements of the given recursive enumeration of 5. For each 
N place in a set /3 the at most Nk sequences M that can be obtained 
from M' by replacing the designated elements of M' by elements 
chosen from the first N elements of 5. The generated set of sequences 
j8 then consists of all M's obtainable from M ' by replacing the desig­
nated elements of M' by arbitrary elements of 5. 

The n's we wish to generate are then those positive integers for 
which the assumed reduction yields the table TV and a sequence of 
m's, M, such that If is a member of /3. Generate then the elements of 
j3. As an element M of /3 is generated, generate the positive integers 
1, 2, 3, • • • , and as a positive integer n is generated, find the corre­
sponding sequence of m's and table yielded by the reduction of C to 
S. If then that sequence of m's is M, and the table is TV, add n to the 
given set a. As seen above, each such n will be in C. Hence the re­
sulting generated, and hence recursively enumerable, set a' is a sub­
set of C containing a. Our reason for thus adding the desired n's to 
a instead of just forming the class thereof is that the iterative process 
we are about to set up requires a cumulative effect. 

As a result of our hypothesis and construction we thus have a 
derived process Ö£ which for every recursively enumerable subset a 
of Ü yields a definite recursively enumerable subset a' of Ü contain­
ing ce. Starting with a, we may then iterate the process II£ to obtain 
the infinite sequence A:au a^ as, • • • , where a i=a , an+i = (an)'. 
Each member of A is thus a recursively enumerable subset of Ü, and 
contained in the next member of -4. By applying the original process 
11* to the members of A we correspondingly obtain the infinite se­
quence S:(7i, <r2, o's, • • • , where <r3- is the quadruplet (»0), M(7), T^\ 
JW)) yielded by 11* for a3-> We then observe the following. If îorji^ji 
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the JPS of <Tjx and cr^ are the same, and the I's are the same, then the 
sequences obtained from the M's by deleting the designated m's can­
not be identical. For if they also were identical, then, with say ji<J2, 
w<'2> would have been assigned to a('i+1), whereas it actually is outside 
of aty> which contains a('i+1). Hence, the infinite sequence 2 ' , ob­
tained from 2 by deleting from each 07 the integer n™ and the desig­
nated m's of M^, itself consists of distinct elements. 

It follows that there are an infinite number of distinct undesignated 
m's appearing in 2. Indeed, the distinct T^'s of S are at most K 
in number. With T}J) fixed, the order i><>> of T[j) is fixed; and since 
1^*?)<*?)< * • • <i$£vM, the number of distinct J's is finite. 
Finally, with T and I fixed, were the total number of distinct undesig­
nated m's finite, the number of distinct ways in which those v^ — k 
undesignated m's could assume values would be finite. Hence 2 ' 
would be finite, not infinite. 

Now were each of this infinite set of undesignated m's in 5, we 
could regenerate the elements of 2, and as an element <r,- thereof is 
generated, place all of its undesignated m's in a set 7, and thus ob­
tain an infinite generated, and hence recursively enumerable, subset 
of S. As this contradicts the simplicity of 5, it follows that at least 
one undesignated m arising in 2 is in S. 

We can then find a unique such w, as well as a a in which it oc­
curs, as follows. With 2V=1, 2, 3, • • • , generate the first N elements 
of the given recursive enumeration of 5, and the first N elements of 
2, and test the latter in order to see if any undesignated m is among 
those first N elements of 5. If a particular undesignated m of 2 in 
5, proved above to exist, is the Lth member of S, and in the Kth 
member <rK of 2, then an affirmative answer to the above test will 
certainly be obtained for JV« max (L, K). Find then the first N for 
which an affirmative answer is obtained, and let (m, M, Tu I) be the 
first <r to yield the affirmative answer for this N, nty the first un­
designated moi M thus found to be in 5. We can then add tm> to the 
designated m's of Af, thus obtaining a quadruplet (n, M, Tit Jj), 
where i\ designates (k + 1) of the m's of M as being in 5, and where n 
is certainly a member of C not in the originally given a. But the whole 
process leading up to (n, My T^ I\) is determined by that a. It is 
therefore the desired process Hp for p = k +1. 

Under the assumed reduction of C to 5, Up would therefore exist 
for every natural number p. With a say the null set, we would thus 
obtain for every natural number p a quadruplet (wp, MP1 Tiv% Ip) 
such that p of the members of the sequence Mp are in S. Yet the total 
length of Mp is the order of 2T< , and hence bounded. Hence the 
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THEOREM. NO creative set is reducible to a simple set by bounded 
truth-tables. 

We recall that every recursively enumerable set of positive in­
tegers is one-one reducible to the creative set K, the complete set. 
Hence the 

COROLLARY. Every simple set is of lower degree of unsolvability 
than the complete set K relative to reducibility by bounded truth-tables. 

8. Counter-example for unbounded truth-tables. We recall that for 
the particular simple set S constructed in §5, of the first 2m+2 
positive integers at most m were in S, m being any positive integer. 
Hence, of the m + 1 integers m + 2 , w + 3 , • • • , 2m+2, at least one is 
in S. By setting w = 2n — 1 , with w = l, 2, 3, • • • , we can effectively 
generate the infinite sequence of mutually exclusive finite sequences 

a: (3, 4), (5, 6, 7, 8), • • • , (2* + 1, 2* + 2, • • • , 2"+i), • • • 

such that each sequence in <r has at least one member thereof in 3?. An 
effective one-one correspondence between the positive integers 1, 2, 
3, • • • and the elements of a is then obtained by making the positive 
integer n correspond to the sequence (2W+1, 2 n +2 , • • • , 2W+1) 
constituting the wth element of <r. 

Given a creative set C, regenerate the elements of S, placing each 
in a set Si. Furthermore, regenerate the elements of C, and as an 
element n thereof is generated, place all of the positive integers in 
the nth sequence of <r in Si. The resulting set Si is a generated, and 
hence recursively enumerable, set of positive integers. Since Si con­
tains S, 3 contains Si. As S is simple, S, and hence 3i, does not have 
an infinite recursively enumerable subset. Moreover, Si is also infinite. 
For C is infinite. And, for each element of C, the corresponding se­
quence in cr has only those of its members that are already in S also 
in Si, and hence at least one element in 3i. Hence, Si is simple. 

Likewise we see that a positive integer n is in C, or C, according 
as all of the integers in the nth sequence of cr are in Si, or at least 
one is in 3i. If then we make correspond to each positive integer n 
the sequence of 2n positive integers ( 2 n + l , 2 n + 2 , • • • , 2W+1), and the 
truth-table of order 2n in which the sign under n is + in that row in 
which the signs under the 2n "m's" are all + , and in every other row 
the sign under n is —, we have a reduction of C to Si by truth-tables. 
Hence the 

THEOREM. For each creative set C a simple set S can be constructed 
such that C is reducible to S by unbounded truth-tables. 
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COROLLARY. A simple set S can be constructed which is of the same 
degree of unsolvability as the complete set K relative to reducibility by 
truth-tables unrestricted. 

Simple sets as such do not therefore give us the absolutely lower 
degree of unsolvability than that of K we are seeking. 

9. Hyper-simple sets. The counter-example of the last section sug­
gests that we seek a set satisfying the following 

DEFINITION. A hyper-simple set H is a recursively enumerable set 
of positive integers whose complement TI is infinite, while there is no 
infinite recursively enumerable set of mutually exclusive finite sequences 
of positive integers such that each sequence has at least one member 
thereof in # . 2 1 

In this definition we may use the original Gödel method for 
representing a finite sequence of positive integers mi, m^ • • • , mP 

by the single positive integer 2mi 3™* • • • pmvt where 2, 3, • • • , pv 

are the first v primes in order of magnitude. A set of finite sequences 
of positive integers is then recursively enumerable if the set of Gödel 
representations of those sequences is recursively enumerable. 

THEOREM. A hyper-simple set exists. 

Our intuitive argument must again draw upon the formal develop­
ment to the effect that each recursively enumerable set of finite se­
quences of positive integers will be determined by a "basis" JB*, 
and that all such bases can be generated in a single infinite sequence 
of distinct bases 

O : JBi, JB2, BZ, • • • . 

As in §2, generate the elements of 0*, and as an element B* is gen­
erated, set up the process for generating the set of sequences deter­
mined by J3*, and as a sequence 5 is thus generated, write down the 
couple (£*, s). The resulting set of couples is then a generated set, 
and can indeed be effectively ordered in a sequence of distinct 
couples 

4ç jtg %|g %£# 

Ox : (B{l1 si), (Bh, 52), (Biv sz), • • • . 

21 Mutually exclusive sequences here mean no element of one sequence is an ele­
ment of another. Curry suggests that "hyper-simplen is linguistically objectionable, 
and should be replaced by "super-simple/ But we would not then know what to use 
in place of the letter H. 
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Oi* then consists of all distinct couples (£*, s) such that finite se­
quence s is a member of the recursively enumerable set of finite se­
quences of positive integers determined by basis B*. 

Now the condition that no infinite recursively enumerable set of 
mutually exclusive finite sequences of positive integers has the prop­
erty that each sequence has at least one positive integer thereof in 
IB is equivalent to each such set of sequences having at least one se­
quence all of whose members are in H. Our method of constructing 
the desired hyper-simple set H will then consist in placing in H for 
certain B*'s in 0* all of the positive integers in a sequence in the 
set of sequences determined by B*. For purposes of presentation we 
shall call each such basis B* a contributing basis, while every B* 
determining an infinite recursively enumerable set of mutually ex­
clusive sequences will be called a relevant basis. Set 73", if recursively 
enumerable, will then be hyper-simple if each relevant basis is a con­
tributing basis, and H is infinite. 

If J3* is a relevant basis, then among the infinite number of mutu­
ally exclusive sequences generated by J5* there must be a sequence 
each of whose elements exceeds an arbitrarily given positive integer 
N. For did every sequence generated by JS* have as element one of 
the integers 1, 2, • • • , N, for any N+l of these sequences at least 
two would have one of these integers in common. We shall then gen­
erate H by regenerating sequence 0i*, and, as an element (Bfn, sn) 
thereof is generated, we shall place all the elements of sn in H if B*n 

has not thus been made a contributing basis earlier in the process, 
while the elements of sn are all greater than a certain positive integer 
Nn, about to be determined ; otherwise none. Inductively, assume Nm 

to have been determined for l^m<nt and thus the entire process 
up to the time (Bfn, sn) was brought up for consideration. Let 
Bfv Bf2, • • • , Bfv be the bases that have thus far contributed to JfiT, 
and in the order in which they became contributing bases. These 
bases are then distinct, and hence their subscripts, which give their 
position in the sequence 0* of all distinct bases, are distinct. Let 
ki, Jt2, - • • , kv be the largest integer placed in H by the first con­
tributing basis, by the first two, • • • , by the first j \ The result 
being cumulative, ki^kz^ • • • ^kv. The crux of our construction 
is to make Nn depend not on the history of all these v contributions 
to H, but only on that part of that history up to and including the 
last contribution, if any, made by a -B* preceding B*n in 0*. Specifi­
cally, if Bfp is the last of the above v contributing bases preceding B\ 
in 0*, that is, wi t l i j <in, Nn is to be one more than the largest integer 
present in H as a result of all the contributions made up to and in-
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eluding the contribution made by B£. That is, iVn = ^M+l. Actually, 
if none of the v contributing bases precede 5£ in 0*, no condition is 
to be placed on sn, and all of its elements are placed in H so long as 
j3£ is distinct from the v contributing bases obtained thus far, 

Furthermore, in our induction assume that we have been able to 
keep a record of the sequence Bfv Bf2, • • • , B*v, of ki, fa, • • • , kvt 

and also of ji,j%, • • • , jv up to the time (B*n, sn) was about to be gen­
erated. We then generate (J3<*, sn), and by regenerating 0* find the 
place of B£ in 0* thus determining the subscript in. Our criterion 
for determining whether, or no, the elements of sn are to be placed 
in H then becomes effective. In the latter case, the record is un­
changed as we generate (JB£+1, 5n+i). In the former, 5£ is written into 
the record as Bfv+1, in as jv+i while we can write in for kP+i the maxi­
mum of fa and the largest integer in sn. The entire process is thus 
effective at each stage, and H is thus a generated, and hence recur­
sively enumerable, set of positive integers. We proceed to prove it 
hyper-simple. 

Let J5* be any relevant basis. Of the finite number of bases pre­
ceding B* in 0*, but a finite number can be contributing bases. Let 
5£ be the last of these contributing bases, if any, appearing in the 
sequence Bfv B*2, Bf9, • • • of distinct contributing bases determined 
by the above generation of H. There will then be a sequence 5 gen­
erated by JB* each of whose elements is greater than &M+1. When then 
(£*, s), a definite element of Of, is generated in the course of generat­
ing H, B* will contribute each element of s to H unless it became a 
contributing basis earlier in the process. Hence, every relevant basis 
is a contributing basis. 

It also follows, or is easily seen directly, that the number of con­
tributing bases is infinite. Consider then the infinite sequence of 
contributing bases Bfv B*2, Bfs, • • • , the corresponding infinite se­
quence of subscripts j%, j 2 , 73, • • • , and the associated infinite se­
quence ku fay fa, * • - . Since the contributing bases are distinct, so 
are their subscripts. Hence, for each j m i among the infinite set of f s 
following j m there is a unique least j,jm'- Consider then the resulting 
infinite sequence j \ v j \ v j \ v • • • , where j\% is the least j in the whole 
infinite sequence of fs, while X2 = (Xi)', As**^/ , • • • . Now k^ is 
the largest integer contributed to H through the contributing basis 
with subscript j ^ . Since j \ n is the smallest j following j \ n ^ it is less 
than all succeeding ƒ s. Hence B* with subscript j \ n precedes in 0* 
all bases following that B* in the above infinite sequence of con­
tributing bases. Hence, each element added to H by contributing 
bases thus following B* with subscript jxn must exceed fan+l. I t fol-
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lows, on the one hand, that for each positive integer n, fexn+l is in 5 \ 
On the other hand, k\n+1 itself exceeds k\n+l so that k\nH+l >k\n+l. 
These members of H therefore constitute an infinite subset of the 
consequently infinite 27. Hence, H is hyper-simple. 

Clearly, every hyper-simple set H is simple. For an infinite recur­
sively enumerable subset of H, as set of unit sequences, would con­
tradict H being hyper-simple. Our construction of §6, in view of §8, 
gives us, however, a simple set which is not hyper-simple. Hyper-
simple sets thus constitute a third class of recursively enumerable sets 
with recursively unsolvable decision problems—a class which is a 
proper subclass of the class of simple sets. 

10. Non-reducibility of creative sets to hyper-simple sets by truth-
tables unrestricted. Let creative set C be reducible by truth-tables to 
a recursively enumerable set of positive integers H. The given re­
duction will again determine for each positive integer n a finite se­
quence of positive integers mi, m2, • • • , mv, and a truth-table T of 
order v such that that row of the table which correctly tells of the m's 
whether they are, or are not, in H will correctly tell of n whether it is, 
or is not, in C. Of course v and T as well as the m's depend on n> and 
the set of distinct T's now entering into our reduction may be in­
finite, and hence the set of distinct v's unbounded. 

Let /i, k, • • • , In be any given finite sequence of distinct positive 
integers. A particular hypothesis on the Vs being, or not being, in H 
may then be symbolized by a sequence of /* signs, each + or —, such 
as H— • • • + , such that the ith sign is + , or —, according as the 
hypothesis says that U is in Hf or 17, respectively. We shall speak of 
such a sequence of signs as a truth-assignment for the Z's, the ith sign 
in that sequence as the sign of U in that truth-assignment. Of the 2" 
possible truth-assignments for the Vs, constituting a set Vu one and 
only one correctly tells of each U whether it is, or is not, in H. Every 
set V of truth-assignments for the Vs is then a subset of Vu and will 
be called a possible set of truth-assignments if it includes this correct 
truth-assignment. 

Let then V be any given possible set of truth-assignments for the 
Vs. Let n be a positive integer with corresponding mu M2, • • • , mVi 

T yielded by the given reduction of C to H such that each m not an I 
is in H. The correct row of table T must then have the following two 
properties. First, the sign under each m not an / must be + . Second, 
the signs under those m's which are Vs must be the same as the signs 
of those integers in some one and the same truth-assignment for the 
Vs in V, in fact, as in the correct truth assignment for the Vs. Any row 
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of T having these two properties, given the Ts, m's and V, will be 
called a relevant row of T. Since for our n the correct row of T is thus 
a relevant row, it follows that n will surely be in Ü if for each relevant 
row of T the sign under n is —. 

Generate then the positive integers 1, 2, 3, • • • , and as a positive 
integer N is generated, generate the first N members of a given re­
cursive enumeration of Hy and for each n, with l^n^Nt find the 
corresponding mi, m*, • • • , m„ T yielded by the given reduction of 
C to H. Of those m's, if any, which are not /'s, see if each is one of 
those first N members of H. If they all are, see if for each relevant 
row of T the sign under n is —. If that also is true, place n in a set ay* 
Since each such n must be in C, as seen above, ay is a subset of Ü. 
And being a generated set, av is therefore a recursively enumerable 
subset of C. 

C being creative, we can therefore find a definite positive integer 
n' in C but not in ayy and, by the given reduction, the corresponding 
^ i , mf

2, • • • , m[>y T'\ Let £i, pz9 • • • , p\ be those m"s, if any, which 
are not /'s. Now suppose that each p is in iî . Then for at least one 
relevant row of T' the sign under n' must be + . For otherwise, if pi 
is say the &»th element in the given recursive enumeration of H, nr 

would have been placed in av in the above generation thereof for 
iV=max (ki, fo, • * • , k\, n'). Since n' is in C, such a relevant row 
cannot be the correct row. But, with each p in JF7, the signs in that 
row under m's that are not Vs are correctly + . Hence the sign under 
at least one m' that is an / must be incorrect. But, by our definition 
of a relevant row, the signs under all such m"s are the same as the 
signs of those integers in at least one truth-assignment in V. Such a 
truth-assignment in V cannot therefore be the correct truth-assign­
ment for the /'s, and hence may be deleted from V. Perform this 
deletion for all such truth-assignments in Vy and for all such relevant 
rows of JT', to obtain the set of truth-assignments V'. Under our 
hypothesis that each p is in H, V' will then be a proper subset of V, 
and yet a possible set of truth-assignments for the Z's. 

Actually, let V be any given set of truth-assignments for the /'s, 
possible or not. Each step of the above construction can then still be 
carried out, though the constructed entities need not now have all 
the properties they otherwise possess.22 In particular, the set of in­
tegers, possibly null, pu p2, • • • , p\ can be found, all different from 
any /. Likewise, whether the p's are, or are not, all in H, the subset 
V' of V can be found. What we can say is that if F is a possible set, 

22 Recall that in the definition of creative set, §3, each B determines an w, whether 
the a determined by B is, or is not, a subset of C* 
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and if furthermore each p is in Hf then V' is a proper subset of V, and 
itself is also a possible set of truth-assignments for the Vs. 

For the given sequence of Z's, start then with F = V%t the possible 
set of all 2" truth-assignments for the /'s, obtain the corresponding 
P's, Pu P» ' * - >P\' and corresponding V', F2 = (Fi);. With F=F 2 , 
likewise find p", p'2\ • • • , p\», and Vz**(V%)', and so on. Now each 
Vi+i is a subset of Vi, while V\ is but a finite set of 2" members. Hence 
in at most 2M steps we shall come across a VK such that either VK+i is 
identical with VK, or is null. But if all the p"s, p"989 • • • , />(*>'s were 
in H, Vi being a possible set, F2, • • * , VK as well as V*+i would all be 
possible sets, each a proper subset of the preceding. VK+i could not 
then either be identical with VK, or null. It follows that at least one 
of the p\J)'s with 1 £j ^ K is in TI. Each p^ is an integer that is not 
one of the Vs. If then we take this finite set of p^'s and arrange them 
in a sequence of distinct elements in say order of magnitude, we ob­
tain for our arbitrarily given sequence of distinct positive integers 
hf h, • * • , h a sequence of distinct positive integers ki9 &2, • • • , kv 

having no element in common with the fortner sequence, and having 
at least one element in U. 

Starting with the null sequence as the sequence of Vs, we can thus 
find the sequence of k's, (jfej, k^ • • • , K') oi distinct positive integers 
at least one of which is in "H. Inductively, let us have thus generated 
the sequences (k'v fy, • • • , k^)f • • • , (MM), $\ * * ' » k%)9 mutually 
exclusive, of distinct positive integers, each having at least one ele­
ment in 37. With the single sequence k[9 • • • , k% as the sequence of 
Vst we can find the corresponding sequence of &'s, (fc[Mrfl\ k£+1), • • • , 
£jÖ$) of distinct positive integers with no element in common with 
any of the preceding sequences, and having at least one element in 71'. 

With creative C reducible to recursively enumerable H by truth-
tables we can thus obtain an infinite generated, and hence recursively 
enumerable, set of mutually exclusive finite sequences of positive 
integers each having an element in TI. The set H is therefore not 
hyper-simple. Hence the 

THEOREM. NO creative set is reducible to a hyper-simple set by truth-
tables. 

COROLLARY. Every hyper-simple set is of lower degree of unsolvability 
than the complete set K relative to reducibility by truth-tables. 

Despite this result, the brief discussion of Turing reducibility, still 
in the informal stage, entered into in the next section makes it dubi­
ous that hyper-simple sets as such will give us the desired absolutely 
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lower degree of unsolvability than that of K. But, in the absence of a 
counter-example, they remain candidates for this position. 

11. General (Turing) reducibility. The process envisaged in our 
concept of a generated set may be said to be polygenic. In a monogenic 
process act succeeds act in one time sequence. The intuitive picture 
is that of a machine grinding out act after act (Turing [24]) or a set 
of rules directing act after act (Post [18]). The actual formulations 
are in terms of "atomic acts," the first leading to a development 
proved by Turing [25] equivalent to those arising from general recur­
sive function or X-definability, and hence of the same degree of gen­
erality. In our intuitive discussion the acts may be "molecular." 

An effective solution of the decision problem for a recursively 
enumerable set Si of positive integers may therefore be thought of as 
a machine, or set of rules, which, given any positive integer n, will 
set up a monogenic process terminating in the correct answer, "yes" 
or "no," to the question "is n in Si." Now suppose instead, says 
Turing [26] in effect, this situation obtains with the following modifi­
cation. That at certain times the otherwise machine determined 
process raises the question is a certain positive integer in a given re­
cursively enumerable set 52 of positive integers, and that the machine 
is so constructed that were the correct answer to this question sup­
plied on every occasion that arises, the process would automatically 
continue to its eventual correct conclusion.28 We could then say that 
the machine effectively reduces the decision problem of Si to the deci­
sion problem of 52. Intuitively this should correspond to the mpst gen­
eral concept of the reducibility of Si to 52. For the very concept of the 
decision problem of 52 merely involves the answering for an arbi­
trarily given single positive integer m of the question is m in S2; and 
in finite time but a finite number of such questions can be asked. A 
corresponding formulation of "Turing reducibility" should then be 
the same degree of generality for effective reducibility as say general 
recursive function is for effective calculability.24 

We may note that whereas in reducibility by truth-tables the posi-

28 Turing picturesquely suggests access to an "oracle " which would supply the cor­
rect answer in each case. The "if * of mathematics is however more conducive to the 
development of a theory. 

u A reading of McKinsey [16] suggested generalizing the reducibility of a recur­
sively enumerable set S to a recursively enumerable set S' to the reducibility of S 
to a finite set of recursively enumerable sets Su £2, • • • , Sn. However, no absolute 
gain in generality is thus achieved, as a single recursively enumerable set .S' can be 
constructed such that reducing S to (S%, £*,-••• , Sn) is equivalent to reducing S 
to S'. Points of interest, however, do arise. 
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tive integers m of which we ask the questions "is m in SJ* are effec­
tively determined, for given n, by the reducibility process, in Turing 
reducibility, except for the first such m, the very identity of the m's 
for which this question is to be asked depends, in general, on the cor­
rect answers having been given to these questions for all preceding 
rn's. The mode of this dependence is, however, effective, hence we 
still have effective reducibility in the intuitive sense. 

Let now creative set C be Turing reducible to a recursively enumer­
able set S of positive integers. We shall talk as if our intuitive dis­
cussion has already been formalized. Generate the positive integers 
1, 2, 3, • • • , and as a positive integer N is generated, for each n with 
l ^w^iV proceed as follows. Set going the reducibility process of C 
to S for n. Each time a question of the form "is m in S" is met, see if 
m is among the first N integers in a given recursive enumeration of 5. 
If it is, supply the answer "yes," thus enabling the reducibility 
process to continue. Finally, if under these circumstances the process 
terminates in a "no" for the initial question of n being in C, place n 
in a set a0. This a0 is then a recursively enumerable subset of Ü con­
sisting of all members thereof for which the given Turing reduction of 
C to 5 leads only to questions of the form "is m in S" whose answer is 
"yes." 

Find then no of C not in a0, and set the reducibility process going 
for w0. Now if at any time a wrong answer is supplied to a question 
"is m in 5," we can nevertheless expect our machine for reducing C 
to S either to effectively pick up the wrong answer and operate on it 
to give a next step in the process, or to cease operating. Generate then 
the positive integers 1, 2, 3, • • • , and as a positive integer N is gen­
erated, generate the first N members of the given recursive enumera­
tion of 5, and make the reducibility process for no effective though 
perhaps incorrect as follows. Each tinje a question of the form "is m 
in S" is reached, see if m is among the first N members of 5. If it is, 
answer the question "yes," and correctly so; if not, answer the ques­
tion "no," whether that answer be correct or no. If now this pseudo-
reduction terminates in a "no," place the finite number of rris thus 
arising in a set /3no. Note that j3no consists of all such m's for all such 
pseudo-reductions for the given no- Being a generated set of positive 
integers, /3no is recursively enumerable. 

Now let the correct, though possibly non-effective, reducibility 
process for n0 involve the ju questions "is mi in 5," i = l, 2, • • • , /x. 
Let miv m»2, • • • , wtj, be those of these w;s actually in 5, and let 
them be the Wist, wid, • • • , w„th members of the given recursive 
enumeration of 5. If then N*zM —max (#i, n^ • • • , nv), or M =»! if 
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v — 0, the corresponding psuedo-reduction for n becomes the correct 
reduction. For, inductively, if that be so through the time a question 
"is m in S" is raised, m will be mi, m^ • • • , or mM, hence will, or will 
not, be in S according as it is, or is not, one of the first N members of 
S. The answer is then correctly given by that pseudo-reduction, 
which therefore continues to be correct through the raising of the next 
question. Finally, since n0 is in Ü, the correct reduction, now the 
pseudo-reduction, must terminate with a "no." 

It follows that all i\Ts with N>M merely repeat the contribution 
to j8no made by N—M, that is, of the integers wi, m%, • • • , wM. Since 
but a finite number of m's are contributed by iV's with N<M, it fol­
lows that /3„0 is a finite set. Finally, were each of the integers 
tni, W2, • • • , mM in S, n0 would be in a0. Hence, at least one member of 
j3no is in 3. 

Formally, we would thus obtain a basis for a finite recursively 
enumerable set of positive integers at least one of whose members is 
in 3. Instead of recursively enumerable sets of finite sequences of 
positive integers, we would thus be led to consider recursively enu­
merable sets of bases for finite recursively enumerable sets of positive 
integers. Though, in the last analysis, each sequence in the former 
case must be generated atom by atom, there will come a time for 
each sequence when the process will say "this sequence is completed." 
In the latter case, in general, we cannot have an effective method 
which, for each basis, will give a point in the ensuing process at which 
it can say all members of the finite set in question have already been 
obtained, even though, with the process made monogenic, there al­
ways is such a stage in the process. 

This suggests, then, that we strengthen the condition of hyper-
simplicity still further by replacing "infinitive recursively enumerable 
set of mutually exclusive finite sequences of positive integers" in the 
definition of §9 by "infinite recursively enumerable set of bases 
defining mutually exclusive finite recursively enumerable sets of 
positive integers." Whether such a "hyper-hyper-simple" set exists, 
or whether, if it exists, it will lead to a stronger non-reducibility 
result than that of the last section we do not know. 

On the other hand, an equivalent definition of hyper-simple set is 
obtained if, for example, we replace the quoted phrase by "recur­
sively enumerable set of finite sequences of positive integers having 
for each positive integer n a member each of whose elements exceeds 
n." We now can say that with this as the definition of a hyper-simple 
set, the corresponding extension to a hyper-hyper-simple set cannot 
be made. For we prove the 
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THEOREM. For any recursively enumerable set of positive integers 5, 
with infinite S, there exists a recursively enumerable set of bases defining 
finite recursively enumerable sets of positive integers, each set having at 
least one element in S, and at least one set having each of its elements 
greater than an arbitrarily given positive integer n. 

Briefly, with n given, for each positive integer JV, and each positive 
integer m, place all of the integers n+l, n+2, • • • , n+m in a set 
an if all, or all but the last, are among the first N members of a given 
recursive enumeration of 5. It is readily seen that <xn is a generated, 
and hence recursively enumerable, set of positive integers. A corre­
sponding basis J3(n) can actually be found, and the set of J3(w),s, 
w = l, 2, 3, • • • , being a generated set, is therefore recursively enu­
merable. Moreover, if vn is the smallest integer in the infinite 3 
greater than n, an will consist of exactly the integers w+1, w+2, • • -, 
vn, and hence will be finite, with indeed vn as the only element in 3, 
and with each element greater than n. 

As a result we are left completely on the fence as to whether there 
exists a recursively enumerable set of positive integers of absolutely 
lower degree of unsolvability than the complete set K, or whether, 
indeed, all recursively enumerable sets of positive integers with re­
cursively unsolvable decision problems are absolutely of the same 
degree of unsolvability. On the other hand, if this question can be 
answered, that answer would seem to be not far off, if not in time, 
then in the number of special results to be gotten on the way.26 

Such then is the portion of "Recursive theory" we have thus far 
developed. In fixing our gaze in the one direction of answering the 
lower degree of unsolvability question, we have left unanswered many 
questions that stud even the short path we have traversed. Moreover, 
both our special, and the general Turing, definitions of reducibility 
are applicable to arbitrary decision problems whose questions in 
symbolic form are recursively enumerable, and indeed to problems 
with recursively enumerable set of questions whose answers belong to 
a recursively enumerable set. Thus, only partly leaving the field of 
decisions problems of recursively enumerable sets, work of Turing 
[26] suggests the question is the problem of determining of an arbi­
trary basis B whether it generates a finite, or infinite, set of positive 

25 This is a matter of practical concern as well as of theoretical interest. For accord­
ing as the second or first of the above alternatives holds will the method of reducing 
new decision problems to problems previously proved unsolvable be, or not be, the 
general method for proving the unsolvability of decision problem either of recursively 
enumerable sets of positive integers or of problems equivalent thereto. 
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integers of absolutely higher degree of unsolvability than K. And if 
so, what is its relationship to that decision problem of absolutely 
higher degree of unsolvability than K yielded by Turing's theorem. 

Actually, the theory of recursive reducibility can be but one chap­
ter in the theory of recursive unsolvability, and that, but one volume 
of the theory and applications of general recursive functions. Indeed, 
if general recursive function is the formal equivalent of effective cal-
culability, its formulation may play a rôle in the history of combina­
tory mathematics second only to that of the formulation of the 
concept of natural number. 
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