
ON ORTHOGONAL LATIN SQUARES 

HENRY B. MANN1 

An m-sided Latin square is an arrangement of the numbers 
1, 2, • • • , m into m rows and m columns in such a way that no row 
and no column contains any number twice. Two Latin squares are 
said to be orthogonal if when one is superimposed upon the other 
every ordered pair of numbers occurs once in the resulting square. 
Various methods have been devised for the construction of sets of 
orthogonal squares. However no method has as yet been given which 
would yield all possible sets of orthogonal Latin squares. In con­
structing orthogonal sets it is of value to have simple criteria which 
enable us to decide whether a given Latin square can be a member of 
an orthogonal pair. 

A Latin square to which an orthogonal square exists will be called 
a basis square. In this note we shall derive two simple necessary con­
ditions for a square to be a basis square. 

THEOREM l.Ifin the Latin square L of side 4n+2 the square formed 
by the first 2n+l rows and the first 2n+l columns contains f ewer than 
n+1 numbers which are different from 1, 2, • • • , 2n+l then L is not a 
basis square. 

PROOF. Denote by I the square formed by the first 2w+l rows and 
the first 2n+l columns, by II the square formed by the first 2n+l 
rows and the last 2n+l columns, by IV the square formed by the 
last 2n+l rows and the last 2n + l columns. Then if a number occurs 
a times in I it must occur 2n + l—a times in II and 2n+l~ 
(2n+l —a)=a times in IV. Hence in I and IV together every number 
occurs 2a times. Assume now that I contains fewer than n+l num­
bers different from 1,2, • • • , 2n+l and let L' be a square orthogonal 
to L. In the square resulting from superimposing V on L every pair 
1, i 2,i • • • 2n+ly i must occur. Hence every number i in L' occurs 
2w + l times combined with a number of the set 1, 2, • • • , 2w + l in!,. 
But at most 2n numbers of the set 1, 2, • • • , 2w + l occur in L out­
side of I and IV. Hence at least 2^+2 numbers i of Lf occur combined 
with the numbers 1,2, • • • , 2^+1 in I and IV together an odd num­
ber of times. But at most 2n numbers of L' occur in I and IV com­
bined with numbers of L which are different from 1, 2, • • • , 2n+l. 
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Hence at least 2 numbers of L' would occur in I and IV an odd num­
ber of times; this is impossible. 

COROLLARY 1. If a (An+2)-sided Latin square L contains in 
any subsquare formed by the rows ii, i%f • • • , i2n+i and the columns 
ji, J2, • • • , J W I fewer than n + 1 numbers different from a given set of 
2n + l numbers ki, ki, • • • , fen+i, then L is not a basis square. 

Corollary 1 follows from Theorem 1 if we permute the rows, 
columns and numbers of L in a suitable manner. I t may be remarked 
that using this corollary Tarry's [ l ] 2 proof of the nonexistence of an 
orthogonal pair of 6-sided Latin squares can be simplified con­
siderably. 

We shall say that a Latin square L contains a Latin subsquare of 
side m if only m different numbers appear in a subsquare of L 
formed by m rows and m columns. From Corollary 1 we have another 
corollary : 

COROLLARY 2. If a (4n+2)-sided Latin square contains a subsquare 
of side 2n+l then it is not a basis square. 

Every multiplication table of a group forms a Latin square. A 
group of order 4n+2 has a subgroup of order 2n + l which generates 
a Latin subsquare of side 2n + l. We therefore have the following 
corollary : 

COROLLARY.3. A multiplication table of a group of order 4n+2 is 
not a basis square. 

THEOREM 2. If in the (An+\)-sided Latin square L the square formed 
by the first 2n rows and the first 2n columns contains fewer than n/2 
numbers different from 1, 2, • • • , 2n, then L is not a basis square. 

PROOF. Denote by I the square formed by the first 2n rows and the 
first 2n columns and by II the square formed by the last 2n + l rows 
and the last 2^ + 1 columns. By an argument similar to that used in 
the proof of Theorem 1 it may be shown that if a number occurs a 
times in I it must occur a + l times in II . Hence it occurs 2a + 1 times 
in I and II together. I and II together contain numbers different 
from 1, 2, • • • , 2n a t most 2n + l-\-n — l—3n times and outside of 
I and II numbers of the set 1, 2, • • • , 2n occur at most n — 1 times. 
If Lf were orthogonal to L it would follow, using the methods of the 
proof of Theorem 1, that at least two numbers of L' would occur in 
I and II together an even number of times; this is impossible. 

* Numbers in brackets refer to the References listed at the end of the paper. 
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COROLLARY 4. If in the (4^ + 1)-sided Latin square L a subsquare 
formed by any 2n rows and any 2n columns contains fewer than n/2 
numbers different from a given set k\, k%, • • • , &2n of 2n numbers, then 
L is not a basis square. 

COROLLARY 5. If a (4n + l)-sided Latin square L contains a 2n-sided 
Latin subsquare, then L is not a basis square. 

In the following we shall use some notations and definitions intro­
duced by the author in a previous paper [3]. 

Let Pi be the permutation which transforms 1, 2, • • • , m into the 
ith row of the Latin square L. We identify L with its m row per­
mutations and write L = (Pi, P2, • • • , Pm)* If £ = (Pi, • • • , Pm), 
L' = (P{, Pi, • • • , Pm') then we define LL' = (P{P{, • • • , PmPJl). 
LL' is not necessarily a Latin square. From Theorem 1 of [3] it fol­
lows that two Latin squares A and B are orthogonal if and only if 
there exists a Latin square C such that AC = B. If P is any per­
mutation and A=(Ai, • • • , Am) a Latin square then we put 
PA = (PAu • • • , PAm), AP=-(AiP, • • • , AmP). PA and AP are also 
Latin squares. If A C = B then PAQQ~1CR = PBR. Hence we have the 
following lemma: 

LEMMA I. If A is orthogonal to B then PAQ is orthogonal to PBR for 
any permutations P, Q, R. 

A is said to be equivalent to PAQ. 
If A\ is the identical permutation then A is said to be reduced. 

Clearly if A is reduced then also P~lAP is reduced. 
We can now proceed to prove the following theorem. 

THEOREM 3. Every 5-sided basis square whose first row is 12345 is a 
multiplication table of the cyclic group of order 5. 

PROOF. It follows from Corollary 5 that a 5-sided basis square can­
not contain a 2-sided Latin subsquare. Hence every row of a 5-sided 
basis square must be obtained from every other row by a cyclic per­
mutation of order 5. Let L = (l, P2, P3, P4, P5) be a basis square. 
Pi is a cyclic permutation of order 5. Since in the symmetric group 
all cyclic permutations of the same order belong to the same class 
there exists a permutation Q such that Q^PtQ^(12345). Q~lLQ=L' 
is by Lemma 1 a basis square. Its first row is 12345 and its second 
row 23451. Considering that no 2-sided subsquare may be contained 
in a 5-sided basis square we obtain as possible third rows of L' the 
rows 31524, 35214, 34512. The first two of these third rows lead 
necessarily to Latin squares with 2-sided subsquares, the third leads 
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to a multiplication table of the group of order 5. 
We shall say that a Latin square is based on a permutation group 

G if its rows can be obtained from the row 1, 2, • • - , m by the per­
mutations of G. 

THEOREM 4. Two Latin squares based on two different permutation 
groups of order 5 cannot be orthogonal. 

Let Z and Z' be two such groups. If P?*l is in Z then P-^Z'P^Z', 
for otherwise one could obtain a group of degree 5 and order 25. By 
transforming Z' with the permutations of Z we can therefore obtain 
5 different permutation groups all different from Z. But the sym­
metric group of degree 5 has only 6 subgroups of order 5. Hence every 
subgroup of order 5 which is different from Z can be obtained by 
transforming Z ' with the permutations of Z. Such a transformation 
applied to Z itself leaves all elements of Z fixed. Hence if a Latin 
square based on Z were orthogonal to a Latin square based on Z ' it 
would also be orthogonal to a Latin square based on any other group 
of order and degree 5. 

It is therefore sufficient to show that the Latin square 

12345 
23451 

Z = 34512 
45123 
51234 

cannot be orthogonal to any Latin square L whose rows are 12345, 
24531, 35214, 43152, 51423. By Lemma 1, Z is also orthogonal to 
LPr1 where Pi is the first row permutation of L. Since the permuta­
tions of L form a group, LPr1 contains the same permutations as L. 
Thus it can always be achieved that the row 12345 stands over the 
first row of Z. Then since the pairs 11, 22, 33, 44, 55 all occur in the 
first row, the row 24531 must stand over the fourth row of Z and the 
row 35214 over the second row of Z. But then the pair 23 would 
occur twice. This proves Theorem 4. 

In [3] the following definition was given. A biunique mapping 5 
of a group G into itself is said to be a complete mapping if every 
element of G can be represented in the form XXs where X is an 
element of G and Xs the image of X under the mapping S. 

It was shown in [3] that two orthogonal Latin squares Li, L% based 
on the same permutation group define a complete mapping S of 
the abstract group and that the squares can then be written as 
LX = (PU • • • , P J , i 2 = (PiPf, • • • , PmPi). If the mapping P = 1+5 , 
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that is to say the mapping defined by XT=*XX8\ is an automorphism 
then S is said to be derived from the automorphism T. In this case 
£i = (Pi, . . - , P M ) , L 2 = (Pf, • • • f P D . 

We shall state this result as a lemma. 

LEMMA 2. If the orthogonal Latin squares L\ and Li are 
based on the same permutation group G then Zi = (Pi, • • • , Pw), 
L2 = (PiPf, • • • , PmPm)> where Pi, • • • , Pm are the permutations of Gf 

and S is a complete mapping of G. 

In [3] it was shown: If 5 is a complete mapping of G and 
Pi, •• - , Pm is a regular representation of G then the Latin squares 
(Pi, • • • , Pm) and (PiPf, • • • Pm) are orthogonal. 

We shall now define a slightly different procedure by which orthog­
onal squares may be obtained from complete mappings. It has been 
shown in [3] that every complete mapping can be transformed into 
a complete mapping S for which 1^ = 1. In the following we shall 
consider only complete mappings which have this property. 

Let Gi = 1, • • • , Gm be the elements of a group G. Let S be a com­
plete mapping of G. We form two Latin squares i i and Z2 in the fol­
lowing manner : In theith row and &th column of Zi write / UGiGk = Gi. 
In the ith row and &th column of L2 write I if GiGkG£~GiGf. £1 and 
£2 are Latin squares since they are multiplication tables of G. More­
over L\ is orthogonal to L2. Otherwise for some i, j , k, I with 
(v i ) ^ (£ , I) we should have 

(1) GiPj = Gj£i = G m 

and 

(2) Gfjfjj = GkGfêi = GnGn . 

(Equations (1) and (2) must hold if the pair m, n occurs in the ith 
row and j'th column and in the &th row and Ith column.) But from 
(1) and (2) follows G^Gf. 

Since S is a biunique mapping this is possible only if j — I. It fol­
lows then from (1) that i = k contrary to our assumption. 

Now let £i = (Pi, • • • , Pm), £2 = (Pi , • • • , Pm). Let Lx consist of 
the same permutations as Z2Î we shall show that the mapping T de­
fined by Gi=GiGf is an automorphism. 

To prove this we have to show that from 
(?) GGi - Gh 

follows 

(4) GiPfaGi8 - GjjGu. 
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By assumption Pi = Pj for some j . Hence if GiGi~Gh we must 
have 

s s 
(5) GjGiQi = GkGk* 

Pi transforms 1 into /. Hence also Pj transforms 1 into I and by 
our definition of L2 we have 

(6) GAI8 = GiG8i. 

But 11^ = 1. Hence Gj = GiGf and (4) follows from (5). Hence we have 
the following theorem. 

THEOREM 5. If a group G admits a complete mapping which is not 
derived from automorphisms then there exist two orthogonal Latin 
squares based on two different permutation groups both isomorphic to G. 

COROLLARY 6. The group of order 5 only admits complete mappings 
which are derived from automorphisms. 

The corollary is an immediate consequence of Theorems 4 and 5. 
A set of m — 1 orthogonal m-sided squares is said to be a complete 

set of Latin squares. 
In the following we shall abbreviate finite two-dimensional projec­

tive geometry by PG2. 
In his beautiful paper [2] R. C. Bose established the connection 

between PGVs and complete sets of Latin squares as follows. 
Let G b e a PG2 with m + l points on every line. We pick any line 

Loi G and call it the line at infinity. Let Po, • • • , P m be the points of 
L. Through every one of these points pass m lines different from L. 
We number these lines and let Lij (i = 0, • • • , m; j = 0, • • • , m — 1) 
denote the jth line passing through P*. Every finite point P can then 
be identified with an (m + l)ad of numbers (2"o, • • • , Im), where 
Ij — k if Ljh passes through P . I t is possible to identify every point 
with such an (m + l)ad of numbers since every pair of points deter­
mines exactly one line. A complete set of Latin squares can now be 
formed in the following way. Write the number k in the ith row and 
jth column of the square Lr (r = 2, • * • , m) if k is the rth number of 
the (w + l)ad whose first number is i and whose second number is j . 
Tha t is to say, we let the first two numbers be the row and column 
numbers. From the fact that two lines intersect in one and only one 
point it follows that L2, • • • , Lm are orthogonal Latin squares. 

Conversely if a complete set of Latin squares is given, R. C. Bose 
constructs a PG2 in the following manner: Every "finite" point of 
the PG2 is identified with an (w + l)ad of numbers (Jo, • • •, Im) 
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where, for r^2t the number Ir is the number in the J0th row and the 
i is t column of the rth Latin square. We form m2+m lines Lik 
(i = 0, • • • , m; k = 0, • • • , m — 1), where Lik is the set of all points 
whose ith number is k. Thus we obtain m + 1 sets of parallel lines, each 
set containing m lines. From the orthogonality of the Latin squares 
it follows that two nonparallel lines intersect in only one point. We 
add now one point to each set of parallels and let this additional 
point lie on every line of the set. The set of added points forms the 
"line at infinity." Two lines then intersect in one and only one point. 
From this and the fact that m + 1 lines pass through every point it 
follows easily that every pair of points is contained in one and only 
one line. Thus we obtain a PG% with m2+m + l points arranged in 
m2+m + l lines. 

We shall exemplify R. C. Bose's construction by constructing a 
finite projective geometry consisting of 13 points from a set of 2 
orthogonal 3-sided Latin squares. We start from a 3-sided Graeco-
Latin square whose boxes, that is to say our finite points, we shall 
denote by letters. Thus we have 

11a 22b 33c 

23d 31e 12/ 

32g 13* 21i. 

The sets of parallel lines are: Rows: abc, def, ghi. Columns: adgy 

beh, cfi. Numbers of the first Latin square: afh, bdi, ceg. Numbers of 
the second Latin square : aei, bfg, cdh. 

Adding the "points at infinity" we obtain the finite geometry 

abcj adgk afhl aeim jklm 

defj behk bdil bfgtn 

ghij cfik cegl cdhm 

Let 0, 1, g2, • • • , gm-i be the numbers of a Galois field. Form the 
Latin squares 

0 1 • • • gm-i 

gj gj+l • • • gi+ gm-l 

Lj = gjg2 gjg2 + 1 ' ' ' gjg2 + gm-l j = 1, 2, • • - , M - 1. 

gjgm-1 gjgm-1 + 1 * ' ' gigm-l + gm-l 

R. C. Bose [2] has shown that Llt • • • , Lm«i form a complete set 
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of Latin squares. We shall say that this set is based on the Galois 
field GF(m). We shall further say that a PG2 is equivalent to a com­
plete set S of Latin squares if one can be obtained from the other by 
Bose's method. 

We shall prove the following theorem. 

THEOREM 6. If a PG2 is equivalent to a complete set of Latin squares 
based on a Galois field then it is the analytic geometry of this Galois field. 

PROOF. The complete set of Latin squares can by hypothesis be 
represented by m2 different (m + l)ads of numbers (I0, • • • , Im) of 
the Galois field, where Ir = arIo+Ii ( r ^ l ) with ai = 0 and ai^aj for 
i^j. The lines of the PG% consist of the points ((w+l)ads) with fixed 
Ir and of one point at infinity. Let (1, Jo, Ji) be the coordinates (x, y, z) 
of every finite point and let the coordinates of the infinite point cor­
responding to the rth set of parallels be (0, 1, — ar) for r ^ 2 , (0, 1, 0) 
for r = l and (0, 0, 1) for ^ = 0. Then all points on a line satisfy an 
equation ax+by+cz = 0, namely — lrx+ary+z = 0 for rèzl and 
—IoX+y — 0 for the lines of the first set. Hence the PG2 is the ana­
lytic geometry of GF(m). 

As an application of Theorems 3, 4, 5, and 6 we shall prove the 
following: 

THEOREM 7. Every PG% with 6 points on every line is the analytic 
geometry of GF(5). 

PROOF. From Theorems 3, 4, and Corollary 6 it follows that every 
orthogonal pair Li, L2 of 5-sided reduced squares is based on the same 
permutation group. If Li = (l, P2, • • • , P&) then, by Lemma 2, 
L2 = (l, P2-P2» • • * $ P&P&) where 5 is a complete mapping of the 
cyclic group of order 5. The mapping defined by P? = PiPt is by 
Corollary 6 an automorphism. Hence L2 = (l, Ph • • • » P&) where T 
is an automorphism. We write the group of order 5 as the additive 
group of remainders mod S. Its only automorphisms are those induced 
by multiplication with the remainders 1, 2, 3, 4. Therefore if Pi is 
the permutation obtained by adding i to every remainder Pf must 
be the permutation obtained by adding ai to every remainder where 
a depends only on T. Hence every complete set of S-sided Latin 
squares is based on the remainder system mod 5. Since the remainders 
mod 5 form a Galois field, Theorem 7 follows from Theorem 6. 

It is also easy to show that every complete set of 2, 3, and 4-sided 
Latin squares is based on a Galois field. Hence also the uniqueness 
of PGVs with 3,4, and S points on every line can be proved in the same 
manner. 
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The uniqueness of finite geometries with less than 6 points on every 
line was first proved by J. H. M. Wedderburn and O. Veblen [4]. The 
uniqueness of finite geometries with 6 points on every line was first 
demonstrated by C. R. Maclnnes [5] in a rather laborious tactical 
enumeration of cases. 
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BARD COLLEGE 

SOME THEOREMS ON CO-TERMINAL ARCS 

R. H. SORGENFREY 

It is the purpose of this note to prove certain properties of sums of 
simple arcs which have one or both end points in common. The in­
vestigation was undertaken to answer a question, that of the validity 
of Theorem 3 below, raised by Miss Harlan C- Miller. An example is 
included to show that two of the results obtained are not valid for 
irreducible continua in general. 

THEOREM 1. If Hand K are two distinct arcs from A to B, then each 
point ofH+K—H- K belongs to a simple closed curve lying in the closure 
ofH+K-HK. 

PROOF. Let P be any point of H+K-HK = N, and let S be the 
component of N which contains it. The set S is an arc segment; let 
its end points be X and F. Suppose that no simple closed curve lying 
in N contains P. Then ÏÏ—S contains no continuum containing both 
X and F, for if it did it would contain an arc from Xjto F, and this 
arc plus S would be a simple closed curve lying in N and contain-
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