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CERTAIN LINEAR PARTIAL DIFFERENTIAL 

EQUATIONS 

MORRIS MARDEN 

1. Introduction. In a number of recent papers, Bergman1 has de­
veloped the theory of operational methods for transforming analytic 
functions of a complex variable into solutions of the linear partial 
differential equation 

(1.1) L(U) = Uzi + a(z, z)U, + b(z, z)Ui + c(z, z)U = 0, 

where z=x+iy, z=x—iy, 

1 /dU dU\ 1 /dU dU\ 
*7, = —I i ), U, - — ( + * J, 

2 \dx dy/ 2\dx dy J 
1 /d*U diU\ 

4 \ dx* dy2 ) 
and where the coefficients a(z, z), b{z, z) and c(z, z) are analytic func­
tions of both variables z and z. The equation (1.1) is equivalent to the 
system of two real equations 

AU^ + 2Aüf + 2BU™ + 2Cuf + 2DuT 

+ AcxU
W - ÏCiU™ = 0, 

AUW - 2CU? - 2DU™ + 2AV? + UU? 

+ 4c2U + 4ciU = 0, 

where 

U=U™+iU™; 2A = (a+â) + (b+h); 2JB-f[(tf-a)-(8-J)]; 

c=a+ic2; 2D=(a+â)-(b+h); 2C=*i[(a-a) + (b-h)]. 

Presented to the Society, November 26, 1943; received by the editors November 
13, 1943. This paper was prepared while the author was a fellow under the Program 
of Advanced Instruction in Mechanics at Brown University. 

1 S. Bergman, (a) Zur Theorie der Funktionen, die eine linear e partielle Differential-
gleichung befriedigen, Rec. Math. (Mat. Sbornik) N.S. vol. 44 (1937) pp. 1169-1198; 
(b) The approximation of functions satisfying a linear partial differential equation, 
Duke Math. J. vol. 6 (1940) pp. 537-561; (c) Linear operators in the theory of partial 
differential equations, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 130-155; (d) On 
the solutions of partial differential equations of the fourth order, to appear later. 
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Furthermore, if a = 5 and c is real, then C=D«c2
!=0, and the two 

differential equations become real and identical. 
For equations (1.1), Bergman proved the existence of two functions 

£1(0, 2, t) and £2(2, 2, /), called by him "generating functions of the 
first kind,"2 with the following properties: 

(1) They have the forms 

£i(z, z, t) = exp 1 — I 0(2, z)dz 1 [l + zztEi(z, z, t)], 

E2(z, z, t) = exp f — I b(zy z)dz J [l + zztEi{z> z, /)], 

where each Ej?(z, z, t) has continuous first partial derivatives in z, z 
and /for |/ | ^ 1 and for z and z within a certain four-dimensional 
region. 

(2) The classes C(£i) and C(E2) of functions Ui(z, z) and U*(z, z) 
defined by the formulas 

(1.2) Ui(z, z) = ƒ Ex(z9 z, t)f(z(l - t*)/2)dt/{\ - t*yt\ 

(1.3) U2(z, 2) = ƒ £,(*, z, f)g(z(l - t*)/2)dt/(\ - /2)1/2, 

where/(f) and g(f) are arbitrary analytic functions of f, form subsets 
of solutions of (1.1). 

(3) Every solution U(z, z) of (1.1) may be written in the form 

U(z,z) = J7i(M) + ff*(M), 

with/(J") and g(f) suitably chosen analytic functions. 
As was proved by Bergman, to many theorems about analytic func­

tions of a complex variable correspond analogous theorems about 
functions belonging to classes C(E) generated by functions E of the 
first kind. In particular, if we define as "basic solutions" those corre­
sponding to f(z)=zp, that is 

(1.4) «,(«, z) = ƒ E(z, z, t) [s(l - P)/2]Ht/{\ - P)~ll\ 

then every function U of class C(E) which is regular in \z\ ^r may 

* Generating functions which are considered as not of the first kind are those 
failing to satisfy property (1). When E is a generating function not of the first kind, 
the integration in (1.2) and (1.3) must be taken along a rectifiable curve joining the 
points /= ±1, but not passing through £=0. 
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be expanded in a series U=*%2<xpup which is uniformly and absolutely 
convergent in \z\ ^f. 

For example, in the case of the equation 

(1.5) AU+ £7 = 0, 

E(z, z, t) =eitr
t where z~reie and thus r = (zz)li2. Because of the well 

known formula for the Bessel function of the first kind 

Jp(r) - (2/ir)(l/r(f + 1/2)) ƒ V«(r/2)*(1 - P)r-U*dt, 

the basic solutions are 

(1.6) uP(rf 0) = (*"*/2)T(p + l/2)«*"/,(r). 

But for (1.5), successive terms in the expansion U==%2apup can be 
computed from earlier terms by the use of some recurrence relation 
satisfied by the Bessel's functions, as for example the relation 

(1.7) j ; (r) - (p/r)JP(r) - J^r). 

It would likewise be of practical value in the case of other differential 
equations L(£7)=0 to determine what recurrence relations, if any, 
are satisfied by the basic solutions up(r, 0). 

In the present note, recurrence formulas connecting the basic solu­
tions up(r, 0) are found in the case of differential equations, L(U) =0 
for which at least one of the corresponding "generating functions" 
E(z, z, t) is of the form E(z, z, t) =exp/(r, 0, t) where/(r, 0, t) is a poly­
nomial in / containing either only even powers of t or only odd powers 
of /. Obviously, the equation (1.5) is an example of such an equation. 
Other examples can be found by requiring the coefficients a, b and 
c in the equation L(U) =0 to satisfy certain differential relations.8 

Our first main result may be stated as follows: 

THEOREM 1. Let L(U)=0bea partial differential equation of the type 
(1.1) for which there exists a generating function having one of the forms: 

(I) E(z, z, t) = exp P(r, 0, t), 

(II) E(z, z, t) = exp tP{r, 0, t), 

where P(r, 0, t)—ao(r, 0)+ai(f, 6)t2+ • • • +an(r, d)t2n, and where the 
coefficients aj(r, 0) are of class C' in r and 0. Let uP(r, 0) be the corre­
sponding t(basic solutions" çf equation L(C7)=0 and let 

8 See reference in footnote la, pp. 1194-1195, and also p. 158 of the following ar­
ticle: K. L. Nielsen and B. P. Ramsay, On particular solutions of linear partial differ» 
ential equations, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 156-162. 
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(i.8) «*.«-<-»•[£<*.£](£)•. 

(1.9) &(r, 6) - (- 1)« [ £ (2/ + l)C,itaf] ( ^ J . 

77œ», i / £ has form (I), 

(1.10) — = — up + 2L, «i^p+j ; 
ôr r ,-.o 

whereas, if E has form (II), 

d w p ƒ> 2 * oLjPkUj+k+p+i, 
(1.11) = —Up H >, 

or r re" ,,*.<> 2/ + 2 ^ + 1 
The above theorem will be derived as an immediate consequence 

of two lemmas that are given in the next section. In the third section 
the theorem will be applied to a few specific equations of form (1.1). 

2. Two lemmas. First we shall derive a result for polynomials 
P(r, 0, t) involving only even powers of t. 

LEMMA 1. Let 

P(r, 6, t) = a0(r, e) + <n(r, B)P + • • • + an(r, d)t*n, 

where the aj(r, 0) are functions of class C' in r and 0. Then the function 

(2.1) up(r98) = f ep<''M)(l - p)^^{rei9/2)Ht 

satisfies the recurrence formula 

(2.2) dup/dr = [p/r + Pr(r, 0, (1 - T)W)]uPf 

where T is the operator such that, T acting k times upon up1 

(2.3) Tkup~ (2/rei6)kUp+k 

fork = 0, 1, • • • . 

PROOF. From (2.1) we obtain by differentiating with respect to r: 

(2.4) 

dup p rl rdao doi 
dr r J _ i Lor dr + 

tin (1 - J2)*-1'2 f J it. 
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To evaluate the latter integral, let us note that 

= f [1 - (1 - *2)]V(1 - P)>~li\rea/2)'it 

m /» 1 

m 

ft-0 

Hence, 

(2.5) I t2mep(l - t*)*-w(fe<9/2)vdt = (1 - r)m«,. 

Substituting now from (2.5) into (2.4), we find 

dun p dao dai dan 
-1 = JL Up + _ Up + —- (1 - r ) « , + • • • + — (1 - T)n«p 
or r or or or 

= [p/r + Pr(r,0,.(l- r ) 1 / a )K , 

as was to be proved. 
The corresponding result for a polynomial that involves only odd 

powers of t may be stated as follows. 

LEMMA 2. Let Q(r, 6, t)=a0(r, 6)t+a1(r, 6)tz+ • • • +an(r, 6)t2n+l 

=tP(r, 0, /), where the aj(r, 0) are functians of class C' in r and 0. Then 
the f unctions uP(r, 0) defined by (2.1) satisfy the recurrence formula: 

aup/dr = (p/r)up + {Qt(r, 0, (1 - T)"2) 

(2.6) rTl12 ) 

J t**Pr(r, e, (i - tyi*)dt\ r-*+u*u,, 
where T is the operator defined by equation (2.3). 

PROOF. In place of (2.4), we now have 

dup p r1 fdao dai 

-^ = ^Up+\ M t+—«» + ... 
or T J — i L or or 

(2.7) 
dan 1 /reid\p 

In order to evaluate the latter integral, let us first integrate by parts: 
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f <e«(l - P)*-u*(reu/2)Pdt 
- 1 i r1 

=• I e«(l - ^)*-1'2(reiV2)^(l - t2) 
2 •/—i 

= (1/(2/. + 1)) f eQ(dQ/dt)(l - f)^l\reiy2)Pdt 

= (1/(2/. + 1)) ƒ e«[a0 + 3<M2 + • • • 

+ (2« + l)a„<2"](l - tiy+li\reil>/2ydt. 
Hence, by equation (2.5), 

f fe<»(i - p)*~lli(rtP/2)'to - (i/(2* + i))<M'. ö, (l - Tyi*)Tup 

= ç>«(r, e, (i - r)1 '2) ( f *•»<») T-p+^up. 

Let us then assume that the formula 

f tim+le9{\ - t*)v-li\reill/2ydt 

(2'8) "' /r- \ 
has already been verified for w = 0, 1, 2, • • • , iV and proceed to verify 
the formula for tn = N+l, as follows. 

i: pK+iifl(l - tiy+1i\rei9/2ydt 

= Ö«(r, 0, (1 - J)1'2) j | " f *2*(1 - t2)Ndt~] T-p+Wup 

- J f *2»+2(l - P)»dt1 (2Ae ie)r_J>_1/2Mp+i} 

= Q,(r, 0, (1 - T)1'2) ( f P*{\ - t^+^tJT-p^^Up. 
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Thus, formula (2.8) has been established by mathematical induction. 
We now substitute from formula (2.8) into expression (2.7), thus 

obtaining 

dup p / 

dr r \ 

J'2*'2 (daQ dax dan ) \ 

pp\—+ ( l - / 2 ) + • • • + ( l - / 2 ) 4 ) T-p+^Up 
o I dr dr dr ) / 

- y up+Q<(r, 0, (1 - T)1'2) | ƒ t**Pr(r, 0, (1 -*) 1 / 2 )1 T~*+U*uPf 

as was to be proved. 
PROOF OF THEOREM 1. Formula (2.2) may be reduced to formula 

(1.10) if, using (1.8) and (2.3), we set 

» da J- » /rei9\q 

Pr(r, 0, (1 - T)^)up - £ 'T1 (1 - W*p - E « « ( - 7 - J r % 
j«0 Of fl-0 \ * / 

To reduce formula (2.6) to (1.11), let us set 

Qt(r, 0, (1 - TT/2) - £ (2j + l)a,(l - 20' - E f t ^ Y 1 * 

with the j8y defined as in formula (1.9). Since 
n /rei6\j 

Pr(r, 0, (1 - ^V'2) = 2>*( — )'". 
j-o \ 2 / 

we may write the second term of the left side of (2.6) as 

S*(T)H/. -"' ,S-(T)H , W W V ' 

,Zo 2^ + 2/ + 1 \ 2 / r«" , £o 2£ + 2; + 1 

Thus the proof of our main theorem is completed. 

3. Examples. Let us first verify that the recurrence relation (2.6) 
is a generalization of that for Bessel's functions as given in formula 
(1.7). Here Q(r, 0, t)=rti and thus (2.6) becomes 
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r pTH% -i 
dup/dr - (p/r)u9 + ri\ I t2pidt T-**ll*u9 

(3.1) L J o J 
- (*/')«, - (2^<#/(2# + DK+i-

If now we set 

up = (7rU*/2)T(p + 1/2)JPW, 

Up+1 - (x1/2/2)(i> + l/2)r(p + 1/2)Jp+tMW, 

formula (3.1) reduces at once to formula (1.7). 
As our second example, let us consider the differential equation 

JL(Z7)=0 in which the expression F~c—ab—azf£0 satisfies the two 
equations 

(3.2) Fz = 0, 2F - az + h = 0. 

As shown by Bergman,4 one of the possible corresponding generating 
functions is E(z, z, t) =exp P(r, 0, t) =exp (ao+#i*2)> where 

(3.3) 0o = — I adz, a\ = 2z I Fdz. 
J o «Jo 

According to our theorem, the recurrence relation satisfied by the 
basic solutions is in this case 

(3.4) (dup/dr) = (p/r)up + a0up + ai«p+i. 

where 

ao = döo/dr + dax/dr = - <wr" + 2rF + 2ei0 f Fdz, 
J o 

«i = - (2/re«)(dai/dr) = - 4*-«*F - (4/r) f F<fë. 

A partial differential equation which satisfies conditions (3.2) is 

(3.5) U*- 2(z + z)U* + U~0. 

Here F(z) = 1, a0 = 0, ai = 2r2, and therefore in the recurrence relation 
(3.4) of0=4r, and ai^Se"". Setting U=U(1)+iUm, we see that 
equation (3.5) is equivalent to the system of two partial differential 
equations 

A 7 T ( D (1) „ ( 2 ) (1) 

A _ . ( 2 ) __(2) (1) (2) 

Ai7 — &xUx — 8ücï7y + 4Z7 = 0 , 

* See p. 1194, reference in footnote la . 
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and that recurrence relation (3.4) for up — uv
x)+iup

2) is in this case 
equivalent to the system of recurrence relations 

dup /dr = (p/r)up + 4rup — 8up+i cos 0 — 8up+i sin 0, 

^ <2> / ^ / / N <2> , „ <2> o <2> /, , o <l> • n 

dup /or = (p/r)Up + wup — 8wp+i cos 0 + oup+i sm 0. 

Other examples of partial differential equations L(U)=0 for which 
log E is an even or odd polynomial in t may be found in the articles 
referred to in footnotes l a and 3. For these differential equations also, 
a recurrence relation may be derived by use of Lemmas 1 and 2. 

4. Generalization. By means of formulas (2.5) and (2.8), the theo­
rem given in the introduction may be extended to partial differential 
equations of type (1.1) for which a generating function exists that has 
the form E = g exp ƒ with both ƒ and g suitably chosen polynomials 
in t. The generalization may be stated as follows. 

THEOREM 2. Let L(U)=0 be a partial differential equation of type 
(1.1) for which a generating f unction E(z, z, t) exists that has one of the 
forms 

I. E(z, z, t) = R(r, 0, t) exp P(r, 0, t), 

I I . E(z, z, f) = R(ry 0, t) exp tP(r, 0, /), 

I I I . E(z, zy t) = tR(r, 0, t) exp tP(r, 0, /), 

where 

P(r, 0, t) = a0(r, 0) + at(r, 6)t2 + - • • + am(r9 0)t*»f 

R(f, 0, t) = J0(r, 0) + Ji(r, 0)/2 + • • • + bn(r, 6)fi», 

and where the a / r , 0) and bj(ry 0) are of class Cr in r and 0. Let up(rt 0) be 
the corresponding basic solutions and let R(dp/dr) =]C?+W£i(f\ 0)t2i

f 

(
0 \k m 

a» = ( - l W - - ) £ (2; + DCiW, 

T%e» the recurrence relation satisfied by these basic solutions is 

dUp pUp " n + ^ 

or r fc«o fcc-o 

if E has the form I ; 
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dup pup » ( 2 \ * «+» akyvup+k+v+1 

— = + 22^up+k + [—-J2J 22 0j%.0 , , 
oY r &«o W v &»0 *«o 2p + 2v + 1 

i / £ to the form I I ; and! 

diip * « , / 2 \ - » / « A \ 

6V r \re*V &-o *~o \2p + 2v + 1 / 

*»+n / 2 \ 
+ To^p + J2 \Vk Yfc-i ) «p+* 

fc-i \ re40 / 

if £ Aas the form I I I . 

UNIVERSITY OF WISCONSIN AT MILWAUKEE 

ON GAUSS' AND TCHEBYCHEFF'S QUADRATURE 
FORMULAS 

J. GERONIMUS 

The well known Gauss' Quadrature Formula 

(i) r ° ° G * ( * ) # ( * ) = E p»-w)Gfc(̂
n)) 

is valid for every polynomial G&(#), of degree k£*2n — 1, the {£*n)} 
being the roots of the polynomial Pn(#)> orthogonal with respect to 
the distribution d\l/(x) (i = l, 2, • • • , n; n = l, 2, • • • ).x If the se­
quence {Pn(x)} is that of Tchebycheff (trigonometric) polynomials, 
then the Christoffel numbers p\n\ i = l, 2, • • • , n, are equal, and the 
two quadrature formulas of Gauss and Tchebycheff coincide: 

(2) f ° W ) # ( * ) = PnZG*(^n)), 
J ~oo *—1 

k g 2n - 1; n = 1, 2, 

The converse—that this is the only case of coincidence of these 
formulas—was proved by R. P. Bailey [ la] and, under more restric­
tive conditions, by Krawtchouk [ lb] (cf. also [2]).2 

We shall give here four distinct proofs of this statement, without 
imposing any restrictions on yp(x). 

Received by the editors June 1, 1943. 
1 \p(x) is a bounded non-decreasing function, with infinitely many points of in­

crease, for which all moments exist: c » ^ / ^ #*#(#); w = 0, 1, 2, • • • . 
2 Numbers in brackets refer to the bibliography at the end of the paper. 


