A RECURRENCE FORMULA FOR THE SOLUTIONS OF
CERTAIN LINEAR PARTIAL DIFFERENTIAL
EQUATIONS

MORRIS MARDEN

1. Introduction. In a number of recent papers, Bergman! has de-
veloped the theory of operational methods for transforming analytic
functions of a complex variable into solutions of the linear partial
differential equation

(1.1) LWU) = U+ a2, 2)U. + b3, 2)Us + ¢(2,2) U = 0,

where g2=x-41y, Z=x—1y,
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and where the coefficients a(z2, £), b(z, 2) and c¢(z, %) are analytic func-
tions of both variables 2 and Z. The equation (1.1) is equivalent to the
system of two real equations

T4

AU + 2408 128U + 2cv? + 2008

+ 46, U® — 46,0 = 0,
aU® — 200 — 20U + 2402 + 28U
+ 46U + 4,0 =0,
where
U=UMDHiU®; 24=(a+a)+0+D); 2B=i[(ad—a)—(b—-0)];
c=c1+1icy; 2D=(a+a)—(b+b); 2C=i[(a—a)+(6—b)].

Presented to the Society, November 26, 1943; received by the editors November
13, 1943. This paper was prepared while the author was a fellow under the Program
of Advanced Instruction in Mechanics at Brown University.

1 S. Bergman, (a) Zur Theorie der Funktionen, di¢ eine lineare partielle Differential-
gleichung befriedigen, Rec. Math. (Mat. Sbornik) N.S. vol. 44 (1937) pp. 1169-1198;
(b) The approximation of functions satisfying a linear partial differential equation,
Duke Math. J. vol. 6 (1940) pp. 537-561; (c) Linear operators in the theory of partial
differential equations, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 130-155; (d) On
the solutions of partial differential equations of the fourth order, to appear later.
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Furthermore, if e =15 and ¢ is real, then C=D =c¢;=0, and the two
differential equations become real and identical.

For equations (1.1), Bergman proved the existence of two functions
Ei(z, 2, £) and Eq(z, %, t), called by him “generating functions of the
first kind,”? with the following properties:

(1) They have the forms

Ey(3, %, ¢t) = exp (— f‘a(z, 2)d§) [1+ zztE’:(z, z 1],

Ey(z,%, 1) = exp (— f ‘b(z, z)dz> [1 + 23E5 (2, %, 1) ],
0

where each Ei*(z, &, ¢) has continuous first partial derivatives in 2, 2
and ¢ for |¢| <1 and for z and Z within a certain four-dimensional
region.

(2) The classes C(Ey) and C(E.) of functions Uy(2, Z) and Us(z, 2)
defined by the formulas

) ven=[ iE‘(z' 5, 011 — £)/2)dt/(1 — )P,

(1.3 Us(z,2) = 1E2(Z, z, £)gE(1 — ) /2)dt/(1 — 3)112,

where f({) and g({) are arbitrary analytic functions of {, form subsets
of solutions of (1.1).
(3) Every solution U(z, 2) of (1.1) may be written in the form

U(Z, 2) = U1(Z, 2—3) -+ Uz(z, 5),

with f(¢) and g(¢) suitably chosen analytic functions.

As was proved by Bergman, to many theorems about analytic func-
tions of a complex variable correspond analogous theorems about
functions belonging to classes C(E) generated by functions E of the
first kind. In particular, if we define as “basic solutions” those corre-
sponding to f(z) =27, that is

1.4 up(2, 2) = lE(z, z, 1) [2(1 — 2)/2]rdt/(1 — 12)-12,

then every function U of class C(E) which is regular in Iz[ =7 may

? Generating functions which are considered as not of the first kind are those
failing to satisfy property (1). When E is a generating function not of the first kind,
the integration in (1.2) and (1.3) must be taken along a rectifiable curve joining the
points ¢= 1, but not passing through ¢=0.
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be expanded in a series U= a,u, which is uniformly and absolutely
convergent in |z| =r.
For example, in the case of the equation

(1.5) AU+ U =0,

E(z, 2, t) =ettr, where z=re% and thus » = (22)'/2. Because of the well
known formula for the Bessel function of the first kind

7,6) = QAW+ 1/2) [ e/ — mrea
the basic solutions are
(1.6) up(r, 0) = (w112/2)T(p + 1/2)e?%T (7).

But for (1.5), successive terms in the expansion U= a,u, can be
computed from earlier terms by the use of some recurrence relation
satisfied by the Bessel's functions, as for example the relation

(1.7) T5 (r) = (/1)Tp(1) = Tpa(n).

It would likewise be of practical value in the case of other differential
equations L(U) =0 to determine what recurrence relations, if any,
are satisfied by the basic solutions u,(r, 6).

In the present note, recurrence formulas connecting the basic solu-
tions u,(7, 0) are found in the case of differential equations L(U) =0
for which at least one of the corresponding “generating functions”
E(z, %, 1) is of the form E(z, , t) =exp f(r, 0, £) where f(r, 0, £) is a poly-
nomial in ¢ containing either only even powers of ¢ or only odd powers
of ¢. Obviously, the equation (1.5) is an example of such an equation.
Other examples can be found by requiring the coefficients a, b and
¢ in the equation L(U) =0 to satisfy certain differential relations.?

Our first main result may be stated as follows:

THEOREM 1. Let L(U) =0 be a partial differential equation of the type
(1.1) for which there exists a generating function having one of the forms:

6))] E(z, 2,t) = exp P(r, 9, 1),
(Im) E(z, 2, t) = exp tP(r, 6, 1),
where P(r, 0, £) =ao(r, 0)+ai(r, )2+ - - - +a.(r, 0)i2», and where the

coefficients ay(r, 0) are of class C' in r and 0. Let uy(r, 0) be the corre-
sponding “basic solutions” of equation L(U)=0 and let

3 See reference in footnote 1a, pp. 1194-1195, and also p. 158 of the following ar-
ticle: K. L. Nielsen and B. P. Ramsay, On particular solutions of linear partial differ-
ential equations, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 156-162.
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19 w0 =0 Tewt](Z),

i—a ar J \re®®

(1.9) B(r, 6) = (— 1)«[ 2 (25 + 1)Cy, qai] ( 2 >q

Jumg
Then, if E has form (1),
(1.10) - = _“p Z O jtptg;
ar Ju=0

whereas, if E has form (1I),

ou 2 n u
(1.11) 2= !i_ Uy + — QB Kt k1.
ar r rei? ;o 2 + 21,"+_“1

The above theorem will be derived as an immediate consequence
of two lemmas that are given in the next section. In the third section
the theorem will be applied to a few specific equations of form (1.1).

2. Two lemmas. First we shall derive a result for polynomials
P(r, 0, t) involving only even powers of f.

LeMMA 1. Let
P(r, 6, 8) = aolr, 6) + ai(r, )82 + - - - + a,(r, 0)i%",

where the a;(r, 0) are functions of class C' in r and 0. Then the function
@.1) wy(r, 6) = f zeﬂr.v,»u — B)U2(pgit/2) o
satisfies the recurrence formula
(2.2) duy/dr = [p/r + Pu(r, 0, (1 — T)*/%) Juy,
where T is the operator such that, T acting k times upon u.,,
2.3) Truy = (2/re®) upin
for k=0, 1, -

Proor. From (2.1) we obtain by differentiating with respect to 7:

au,, P ! [aao day

it

dr r _1 ar

](1 s
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To evaluate the latter integral, let us note that

1
f 12meP(1 — 2)P=12(yei /2) 74}

1 1
- f [1 — (1 — #)]meP(1 — e)r1i2(reit/2)2ds

1

m 1
= 3 (= D Cos f ¢P(1 — 1) ++2-112(rgi0/2)
-1

k=0
= 22 (= 1)*Cm 1(2/76®) Pt p .
ke=(0
Hence,
1
(2.5) f £meP(1 — 2)r=12(reit/2)7dt = (1 — T)™u,.
-1

Substituting now from (2.5) into (2.4), we find

ou P da da
e gt — Uyt — (1 = Dup+ -+ - +
or r or or

= [P/" + P.(r, 0, (1 — T)¥?) ]“pr

as was to be proved.
The corresponding result for a polynomial that involves only odd

powers of ¢ may be stated as follows.

LEMMA 2. Let Q(r, 0, t)=ao(r, Ot+ai(r, OB+ - - - +a.(r, 0)s2rt?
=tP(r, 0, t), where the ai(r, 0) are funciians of class C' in v and 6. Then
the functions u,(r, 0) defined by (2.1) satisfy the recurrence formula:

dup/dr = (p/N)up + {Qu(r, 8, (1 — T)1V?)

T1/2
. f tszr(f, 0’ (1 — t)l/Z)dt} T—P+l/2up ,
0

da, -1
dar e

(2.6)

where T is the operator defined by equation (2.3).

Proor. In place of (2.4), we now have

p + 1 Q[aao t+ 8(11 t3+
— — Y e — — DY
or r —1 ar ar

day, reif\?
+ t2"+1] (1 —_ t2)p—l/2 (_ ) dt.
or 2

In order to evaluate the latter integral, let us first integrate by parts:
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1
f 1e2(1 — #2)P12(peif /2) 74t
-1
1 pt
=- (1 — 2)7~12(yeif/2)Pd(1 — 1?)
-1
1

= (1/Q2p+ 1) | (6Q/00)(1 — #)7* /¥ (re®/2)7ds

-1
1

=1/@p+ 1)) | elao+ a2+ - - -

+ (20 + Daq2r](1 — 12)p+12(rei?/2)7d8,
Hence, by equation (2.5),

flteQ(l — )7 12(rei® /2)2dt = (1/(2p + 1))Qe(r, 6, (1 — T)%)Tu,
- 1/2
= Qu(r, 0, (1 — T)¥?) (fT t“dt) T-v+il2y,,
0

Let us then assume that the formula

1
£2mH1eQ(1 — £2)r-112(pgit /2) 2

= 00, (1 = 7y )

has already been verified for m =0, 1, 2, - - -, N and proceed to verify
the formula for m =N-1, as follows.

(2.9)

T1/2

122(1 — 12) mdt) T-rHizyp

1
f FVESER(1 — 12)2-13(rei/2) 5d

-1

1
=f t2N+leQ(1 —_ t2)p—1/2(rei0/2)pdt

-1

1
— 2N H1Q(1 — 42) pH1/2(pgil /2) Pdy
-1

T2
= 0uri0, = 2yo{[ [ ot — e [ o,
0 y
1/2
— [f" p2rt2(] — tZ)th:l (Z/reie)]‘—p—1/2up+l}
0

T2
= Qg(f, 0, (1 - T)llz) (f t2p(1 —_ tZ)N"'ldt)T"""’llzup.
0
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Thus, formula (2.8) has been established by mathematical induction.
We now substitute from formula (2.8) into expression (2.7), thus
obtaining

LI A (Qt(r. 0, (1—T))
4

dor
o day 9daq aa,,
. f 2p{__+_ (1 t2)+ 8 _t2)n}) T-p+1/2up
0 r

T2

e s B R
r 0
as was to be proved.

Proor oF THEOREM 1. Formula (2.2) may be reduced to formula
(1.10) if, using (1.8) and (2.3), we set

da; 1.0
Pu(r, 0,1 — T)\?)u, = 2 1 = T)iu, = Zaq< ) Tou,
) ar q=0
= Z OgUptqe

q=0
To reduce formula (2.6) to (1.11), let us set
retd
Q0,1 = 1) = 5 @5 + Dastt - 1 = 2 :() 7
§=0 =0
with the B; defined as in formula (1.9). Since
,eno i

P (’1 0 (1 - t2)1/2) = Za1< 2 )tzjs

j=0

we may write the second term of the left side of (2.6) as

reit T1/2 n
Eﬁk( ) Tk[ f £ Za,( ) t?!dt] T-vt1i2y,
k=0 0 J=0

= Zﬁ: ______a,-ﬁ;, (L‘f) +kT’°""+1u = _.?_ - ainuﬁi+k+1
im0 29+ 25+ 1 ret? jimo 2p + 25 + 1

Thus the proof of our main theorem is completed.

3. Examples. Let us first verify that the recurrence relation (2.6)
is a generalization of that for Bessel's functions as given in formula
(1.7). Here Q(r, 0, t) =7t and thus (2.6) becomes
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U3

duy/dr = (p/Nu, + ri[j;
= (p/N)up — 2e/(2p + 1))tp11.

svids | T-2+112y
(3.1) ] ?

If now we set
p = (' 3/T(p + 1/2)J p(r)e?’,
thppr = (7% 2)(p + 1/ 2T (P + 1/2)T pya(r)ei @15,
formula (3.1) reduces at once to formula (1.7).
As our second example, let us consider the differential equation

L(U)=0 in which the expression F=c—ab—a,#0 satisfies the two
equations

3.2) F. =0, 2F —a,+ b: = 0.

As shown by Bergman,* one of the possible corresponding generating
functions is E(2, 2, t) =exp P(r, 0, t) =exp (¢o+a1t?), where

2 E]
3.3 ay = — f adz, a = 22 f Fdz.
0 0

According to our theorem, the recurrence relation satisfied by the
basic solutions is in this case

(3.4) (0up/0r) = (p/)thy + cctiy + arthpis,
where .
g = 0ay/dr + 3a1/dr = — ae~® 4 2rF + 2¢i® f Fdz,
0

ay = — (2/re?®)(0a,/9r) = — 4e~F — (4/r) f J'Fdz.
0

A partial differential equation which satisfies conditions (3.2) is
(3.5) Uus—20+3U:+U=0.

Here F(z) =1, ao=0, a1=2r2, and therefore in the recurrence relation
(3.4) ag=4r, and oy = —8e~¥. Setting U=UP+iU?®, we see that
equation (3.5) is equivalent to the system of two partial differential
equations

AU® = 82U, + 8aU,” +4U” =0,

AU® — 82U — 82U’ +4U® =0,

¢ See p. 1194, reference in footnote 1a.
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and that recurrence relation (3.4) for u,=u{"+iu® is in this case
equivalent to the system of recurrence relations

8u,, /ar = (p/r)u, + 4ru ,(,1) - 8u,,+1 cos § — 8u,,+1 sin 4,

aup /ar = (p/r)u,, + 4ru ,(,2) - Su;i)l cos 6 + 8u,,+1 sin 6.

Other examples of partial differential equations L(U) =0 for which
log E is an even or odd polynomial in ¢ may be found in the articles
referred to in footnotes 1a and 3. For these differential equations also,
a recurrence relation may be derived by use of Lemmas 1 and 2.

4. Generalization. By means of formulas (2.5) and (2.8), the theo-
rem given in the introduction may be extended to partial differential
equations of type (1.1) for which a generating function exists that has
the form E=g exp f with both f and g suitably chosen polynomials
in £. The generalization may be stated as follows.

THEOREM 2. Let L(U) =0 be a partial differential equation of type
(1.1) for which a generating function E(z, 2, t) exists that has one of the

forms
I. E(3, %8 = R(r,0,%) exp P(r, 0, 8),

II. E(z, % ¢t) = R(r, 6, t) exp tP(r, 0, 8),
III. E(sz, % 8) = tR(r, 0, t) exp tP(r, 0, 1),
where
P(r,0,8) = ao(r, 0) + a:1(r, )82 4+ - - - + an(r, 6)2m,
R(r, 8, 8) = bo(r, 0) + by(r, 0)82 + - - - + ba(r, 6)82,

and where the a(r, 0) and bi(r, 0) are of class C' in r and 0. Let u,(r, 6) be
the corresponding basic solutions and let R(0p/dr) =Y _m+"ci(r, 0)1%,

= (- 1)k(;§—) > (25 + 1)Cjuai;

I=k

n ab1 2 k ntm
Br = ("‘ 1)k(— Z C: T (— 1)”( e“’) E Ci.kcj-

j=k or ek

Then the recurrence relation satisfied by these basic solutions is

aup P'Mp n+m
— + Z Bithpir + D MVithprn
ar r k=0 k=0

if E has the form I;



1944] ON GAUSS’ AND TCHEBYCHEFF’'S QUADRATURE FORMULAS 217

du, pu, ( ) mOmED oY Ut kbl
—m % — e
ar  r +ZB" L ,,2_:0‘?0 2+ 2+ 1

if E has the form 11; and

» » 2 m n »
b + (—) 22 (JL) Uptbiril

or r 7€t/ o vmo \2p + 2v + 1

mtn 2
+ voup, + 2, (’Yk - ‘;_’Yk— )up«l-k

ko1
if E has the form I1I.

UNIVERSITY OF WISCONSIN AT MILWAUKEE

ON GAUSS’ AND TCHEBYCHEFF'S QUADRATURE
FORMULAS

J. GERONIMUS
The well known Gauss’ Quadrature Formula
) f Gu®dY(x) = X pi Galti”)
—c0 f=1

is valid for every polynomial Gi(x), of degree k<2n—1, the {£"}
being the roots of the polynomial P,(x), orthogonal with respect to

the distribution dy/(x) (¢=1, 2, ..+, n; n=1, 2, - - -)2 If the se-
quence {Pn(x)} is that of Tchebycheff (trigonometric) polynomials,
then the Christoffel numbers p{”, i=1, 2, - - -, n, are equal, and the

two quadrature formulas of Gauss and Tchebycheff coincide:

0 n
[ a@am=nXeE™, rsm-tin=12-
—c0 t=1

The converse—that this is the only case of coincidence of these
formulas—was proved by R. P. Bailey [1a] and, under more restric-
tive conditions, by Krawtchouk [1b] (cf. also [2]).2

We shall give here four distinct proofs of this statement, without
imposing any restrictions on ¥/(x).

Received by the editors June 1, 1943,

1y(x) is a bounded non-decreasing function, with infinitely many points of in-
crease, for which all moments exist: ¢, = jf L XrdyY(x); n=0,1,2, -,

3 Numbers in brackets refer to the bibliography at the end of the paper.



