MODULARITY IN BIRKHOFF LATTICES

L. R. WILCOX

The purpose of this note is to identify upper semi-modular lattices originally defined by G. Birkhoff¹ and subsequently studied by Dilworth² with those *M*-symmetric lattices³ (introduced independently by the author without assumption of chain conditions) which satisfy a condition of finite dimensionality.

The definitions and notations are these. In a lattice L, a > b(b < a) means that a "covers" b, that is, a > b, together with $a \ge x \ge b$ implies x = a or x = b; (b, c)M means (a + b)c = a + bc for every $a \le c$ (where a + b, ab are the "join" and "meet" respectively of a, b). We say that L is M-symmetric if the binary relation M is symmetric; L is a Birkhoff lattice if

(1)
$$a, b > ab \text{ implies } a + b > a, b;$$

L is of finite-dimensional type⁴ if for every a < b there exists a finite "principal chain"

$$a_1 \prec a_2 \prec \cdots \prec a_n$$

with $a_1=a$, $a_n=b$. When a, b satisfy this condition for a specific n, we say that b is n-1 steps over a.

The properties of the relation M are given in part in a previous paper. Additional properties needed here are contained in the following lemma.

LEMMA 1. Suppose b, $c \in L$. Then

- (a) (b, c)M if and only if $bc \le a \le c$ implies (a+b)c = a;
- (b) if (b, c)M, then (b', c')M for $bc \le b' \le b$, $bc \le c' \le c$.

PROOF. The forward implication in (a) is obvious. To prove the

Presented to the Society, November 27, 1943; received by the editors November 22, 1943.

¹ G. Birkhoff, *Lattice theory*, Amer. Math. Soc. Colloquium Publications vol. 25, New York, 1940, p. 62.

² R. P. Dilworth, *Ideals in Birkhoff lattices*, Trans. Amer. Math. Soc. vol. 49 pp. 325-353; also *The arithmetical theory of Birkhoff lattices*, Duke Math. J. vol. 8 (1941) pp. 286-299.

⁸ L. R. Wilcox, Modularity in the theory of lattices, Ann. of Math. vol. 40 (1939) pp. 490-505; see also A note on complementation in lattices, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 453-457.

⁴ This property is weaker than finite dimensionality as used by Birkhoff (loc. cit. p. 11), even if 0 and 1 exist.

⁵ L. R. Wilcox, Modularity in the theory of lattices, pp. 491-495.

converse, let $a \le c$. Then a' = a + bc has the property $bc \le a' \le c$, whence

$$(a + b)c = (a + bc + b)c = (a' + b)c$$

= $a' = a + bc$.

To prove (b) we use the condition in (a). Let $b'c' \leq a \leq c'$. Then

$$(a + b')c' \le (a + b)cc' = ac' = a \le (a + b')c'$$

whence (b) follows.

or

THEOREM 1. Every M-symmetric lattice is a Birkhoff lattice.

PROOF. Suppose a, b > ab. Then it is immediate that a+b>a, b. To prove a+b>a, let $a \le c \le a+b$. Since $b \ge cb \ge ab$, we have cb=b or cb=ab from the hypothesis b>ab. If cb=b, then $a+b \le c$, whence c=a+b. Suppose cb=ab. We shall prove (c, b)M. Let $ab=cb \le x \le b$. Then x=ab or x=b, whence either

$$(x + c)b = (ab + c)b = (cb + c)b = cb = x,$$

 $(x + c)b = (b + c)b = b = x,$

and it follows by Lemma 1 (a) that (c, b)M. Now the symmetry of M yields (b, c)M, and thus, since $bc \le a \le c$,

$$c = (a+b)c = a.$$

In all cases c=a+b or c=a, and consequently a+b > a. Similarly a+b > b.

REMARK. The theorem just proved generalizes the known result⁶ that every modular lattice is a Birkhoff lattice, since modular lattices are *M*-symmetric.

In order to consider the converse of Theorem 1, let, for the purposes of the following lemmas, L be a fixed Birkhoff lattice of finite-dimensional type.

LEMMA 2. If b, $c \in L$ and c > bc, then b+c > b.

PROOF.⁷ Observe that $b \ge bc$; if b = bc, $b \le c$, and b + c = c > bc = b. If b > bc, then there exists $n = 1, 2, \cdots$ such that b is n steps over bc. If n = 1, the result is obvious from condition (1) defining a Birkhoff lattice. Suppose the result has been proved for all b, c for which b is

⁶ Birkhoff, loc. cit. p. 34.

⁷ This is MacLane's second "exchange axiom" in the convex lattice of all $x \ge bc$; as such it follows for finite-dimensional lattices from remarks on p. 63 of Birkhoff. Since L need not be finite-dimensional, we give the proof in full.

k steps over bc, and let b be k+1 steps over bc. Clearly there exists b' < b such that b' is k steps over bc. Since $b'c \le bc \le b'c$, we have c > b'c, and by the induction hypothesis applied to b', c it follows that b'+c > b'. But $b' \le (b'+c)b \le b$, whence (b'+c)b=b' or (b'+c)b=b. In the latter case $b' < b \le b'+c$, and thus b=b'+c, whence $c \le b$, contrary to c > bc. Consequently (b'+c)b=b'. Since b'+c, b > (b'+c)b, (1) yields

$$b + c = b + (b' + c) > b$$
.

LEMMA 3. If $b, c \in L$, c > bc, then (c, b) M, (b, c) M.

PROOF. If $bc \le a \le c$, then a = bc or a = c, so that either

$$(a+b)c = (bc+b)c = bc = a,$$

or

$$(a + b) c = (c + b)c = c = a$$

and (b, c)M. Now suppose $bc \le a \le b$. Then $bc \le ac \le bc$ yields ac = bc. Hence c > ac, and a+c > a by Lemma 2. But $a \le (a+c)b \le a+c$, whence (a+c)b = a or (a+c)b = a+c. In the latter case $a+c \le b$, and $c \le b$, which is impossible. Hence (a+c)b = a, and (c, b)M.

LEMMA 4. Suppose b, $c \in L$, (b, c)M. Then $bc \le a \le b$, a+c=b+c implies a=b.

PROOF. If c=bc, that is, $c \le b$, or if c is one step over bc then (c, b)M either by direct verification or by Lemma 3; hence

$$a = a + cb = (a + c)b = (b + c)b = b.$$

Suppose the result holds for all b, c with c n steps over bc, and let b, c satisfy the hypotheses, c being n+1 steps over bc. Then there exists c' with $bc \le c' < c$, where c' is n steps over bc. Since (b, c')M by Lemma 1 (b), and since $bc' = bc \le a \le b$, we need only verify a+c' = b+c' in order to show a=b. Since (a, c)M by Lemma 1 (b), (c'+a)c=c'. Thus

$$c > c' = (c' + a)c,$$

and by Lemma 2,

$$c + b = c + a = c + (c' + a) > c' + a$$
.

But

$$c' + a \leq c' + b \leq c + b$$

whence

$$c' + b = c' + a$$
 or $c' + b = c + b$.

In the second case, since (b, c)M,

$$c' = (c' + b)c = (c + b)c = c$$

which is impossible. This completes the proof.

THEOREM 2. Every Birkhoff lattice L of finite-dimensional type is M-symmetric.

PROOF. Suppose (b, c)M, and in proof of (c, b)M let $bc \le a \le b$. Define

$$b_1 = (a+c)b \ge a;$$

we shall prove that $b_1 = a$ by applying Lemma 4 to a, b_1 , c in place of a, b, c. First, $(b_1, c)M$ by Lemma 1 (b), since $bc \le b_1 \le b$, and (b, c)M. Moreover,

$$b_1c = (a+c)cb = bc \le a \le b_1.$$

Finally, $a+c \ge b_1$, c, whence

$$a+c \geq b_1+c \geq a+c$$
.

and $a+c=b_1+c$. The hypotheses of Lemma 4 have been verified, and thus $a=b_1$, as was to be proved.

The effect of Theorems 1 and 2 is to show that not necessarily finite-dimensional M-symmetric lattices are a true generalization of the Birkhoff lattices. Moreover, the condition defining M-symmetry does not lose its strength in infinite-dimensional cases as does condition (1). For example, an interval of real numbers ordered as usual satisfies (1) vacuously; it is modular, hence M-symmetric. However, define a lattice L as consisting of the closed real interval I = [0, 1], ordered naturally, together with an element ϵ , with $0 < \epsilon < 1$, but $x < \epsilon$, $\epsilon < x$, $\epsilon \ne x$ for $x \in I$. This is a lattice in which the only covering relations are $\epsilon > 0$, $1 > \epsilon$. Hence (1) is vacuously true, but M-symmetry fails violently, since $(x, \epsilon)M$ for every $x \in L$, but $(\epsilon, x)M$ is false except for x = 0, 1 or ϵ .

Interesting questions are these. What infinite-dimensional generalization of the Jordan chain condition holds in *M*-symmetric lattices? Moreover, in finite-dimensional lattices, (1) together with its dual implies modularity; what can be said generally of lattices which together with their duals are *M*-symmetric?

Illinois Institute of Technology