
MODULARITY IN BIRKHOFF LATTICES 

L. R. WILCOX 

The purpose of this note is to identify upper semi-modular lattices 
originally defined by G. Birkhoff1 and subsequently studied by Dil-
worth2 with those AT-symmetric lattices3 (introduced independently 
by the author without assumption of chain conditions) which satisfy 
a condition of finite dimensionality. 

The definitions and notations are these. In a lattice i , a>b(b<a) 
means that a "covers" b, that is, a>b, together with a*>x^h implies 
x=a or x = b; (ô, c)M means (a~\-b)c = a-\-bc for every a^c (where 
a+b, ab are the "join" and "meet" respectively of a, b). We say that 
L is M-symmetric if the binary relation M is symmetric; I is a 
Birkhoff lattice if 

(1) a,b > ab implies a + b > a, b; 

L is of finite-dimensional type* if for every a<b there exists a finite 
"principal chain" 

ffi •< 0 2 • < • • • • < ffn, 

with ai = af an = b. When a, b satisfy this condition for a specific n, 
we say that b is n — 1 steps over a. 

The properties of the relation M are given in part in a previous 
paper.5 Additional properties needed here are contained in the follow­
ing lemma. 

LEMMA 1. Suppose b> cE.L. Then 
(a) (6, c)M if and only if bcScb^c implies (a+b)c = a; 
(b) if (b, c)M, then (&', c')Mfor bc^b'Sb, bc^c'Sc. 

PROOF. The forward implication in (a) is obvious. To prove the 
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converse, let a t*c. Then a' =a+5c has the property be m*a' £c, whence 

(a + b)c = (a + be + b)c = (a' + b)c 

— a' = a + be. 

To prove (b) we use the condition in (a). Let b'c'^a^c'. Then 

(a + b')e' ^ (a + b)cef = ae' = a g (a + b')e'y 

whence (b) follows. 

THEOREM 1. Every M-syrntnetric lattice is a Birkhoff lattice. 

PROOF. Suppose a, b>ab. Then it is immediate that a+b>a, b. 
To prove a+b>a, let a^c^a+b. Since b^cb^ab, we have cb — b 
or cb=ab from the hypothesis b>ab. If cb^b, then a+b^e, whence 
c—a+b. Suppose cb—ab. We shall prove (c, b)M. Let ab=cb^x^b. 
Then x—ab or # = i, whence either 

(x + c)b = (ab + c)b = (eb + c)b = cb = x, 
or 

(x + c)b = (b + c)i = £ = x, 

and it follows by Lemma 1 (a) that (c, b)M. Now the symmetry of M 
yields (jbf c)M, and thus, since be^a^cf 

c = (a + b)c = a. 

In all cases c—a+b or c=af and consequently a + £ > a . Similarly 
a+b>b. 

REMARK. The theorem just proved generalizes the known result6 

that every modular lattice is a Birkhoff lattice, since modular lattices 
are Af-symmetric. 

In order to consider the converse of Theorem 1, let, for the pur­
poses of the following lemmas, L be a fixed Birkhoff lattice of finite-
dimensional type. 

LEMMA 2. If b, cÇ:L and c> be, then b+c> b. 

PROOF.7 Observe that b^bc; if b = bc, b^c, and b+c = c>bc = b. If 
b>bc, then there exists w = l, 2, • • • such that b is n steps over be. 
If w = l, the result is obvious from condition (1) defining a Birkhoff 
lattice. Suppose the result has been proved for all bt c for which b is 

6 Birkhoff, loc. cit. p. 34. 
7 This is MacLane's second "exchange axiom" in the convex lattice of all x^bc; 

as such it follows for finite-dimensional lattices from remarks on p. 63 of Birkhoff. 
Since L need not be finite-dimensional, we give the proof in full. 
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k steps over be, and let b be £ + 1 steps over be. Clearly there exists 
V<b such that b' is k steps over be. Since brc^bc£bfc, we have 
c> b'e> and by the induction hypothesis applied to 6', e it follows that 
b'+e>b'. But b'£(b'+c)b£b, whence (&'+*)&-6' or (b'+e)b*=b, 
In the latter case b' <bï*b'+c, and thus è = 6'+c, whence c^bt con­
trary to £>fc. Consequently (b'+e)b — b'. Since i ' +c , &>(&'+c)ô, 
(1) yields 

b + c = b + (V + c) > b. 
LEMMA 3. If ft, cGL, c> be, then (c, b)M, (b, e)M. 

PROOF. If be^a^c, then a —be or a~e, so that either 

(a + b)c = (fa + b)c = be = a, 
or 

(a + b) c = (c + b)c = c = a, 

and (è, c)M. Now suppose be^a^b. Then bc^ae^be yields ac — bc. 
Hence c>ac, and a + c > a by Lemma 2. But ag(a+£)&^#+£, 
whence ( a + ^ i ^ a or (a+c)b=sa+c. In the latter case a+e^b, and 
eg6, which is impossible. Hence (a+e)b=a, and (cf b)M. 

LEMMA 4. Suppose b, eE.Lt (b, c)M. Then bc^a^b, a+e-b+c 
implies a=b. 

PROOF. If c = bct that is, c g b, or if c is one step over be then 
(cf b)M either by direct verification or by Lemma 3; hence 

a = a + cb = (a + c)b = (b + c)b = b. 

Suppose the result holds for all bt e with e n steps over be, and let b, c 
satisfy the hypotheses, c being n+1 steps over be. Then there exists 
c' with bc^c'<e, where e' is w steps over be. Since (è, e')-^ by 
Lemma 1 (b), and since be' — bc^a^b, we need only verify a+c' 
= b+c' in order to show a = b. Since (a, c)M by Lemma 1 (b), 
(c'-f-a)c=c'. Thus 

c > c' = (e' + a)c, 

and by Lemma 2, 

c + b = c + a = c + (c' + a) > c' + a. 

But 
c' + a g c' + J g c + J, 

whence 
c' + b = c' + a or c' + J = e + 6. 

In the second case, since (b, e)M, 
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c' = (<•' + b)c = (c + b)c = c, 

which is impossible. This completes the proof. 

THEOREM 2. Every Birkhoff lattice L of finite-dimensional type is 
M-syrnrnetric. 

PROOF. Suppose (ô, c)M, and in proof of (c, b)M let bc^a^b. 
Define 

b\ = {a + c)b ^ a; 

we shall prove that 61 = a by applying Lemma 4 to a, 61, c in place of 
a, ft, c. First, (ii, c)M by Lemma 1 (b), since bc^bi^bj and (6, c)ikf. 
Moreover, 

b\C = (a + c)cô = bc ^ a < bi. 

Finally, a+c}>bi, c, whence 

a + c ^ bi + c ^ a + c, 

and a + c = &i+£. The hypotheses of Lemma 4 have been verified, and 
thus a = 61, as was to be proved. 

The effect of Theorems 1 and 2 is to show that not necessarily 
finite-dimensional Af-symmetric lattices are a true generalization of 
the Birkhoff lattices. Moreover, the condition defining Af-symmetry 
does not lose its strength in infinite-dimensional cases as does condi­
tion (1). For example, an interval of real numbers ordered as usual 
satisfies (1) vacuously; it is modular, hence Af-symmetric. However, 
define a lattice L as consisting of the closed real interval 1= [0, l ] , 
ordered naturally, together with an element €, with 0 < e < l , but 
#<€, €<#, e^x for # £ / . This is a lattice in which the only covering 
relations are €>0, 1>€. Hence (1) is vacuously true, but Af-sym-
metry fails violently, since (x, e)M for every # £ L , but (e, x)M is 
false except for # = 0, 1 or €. 

Interesting questions are these. What infinite-dimensional generali­
zation of the Jordan chain condition holds in Af-symmetric lattices? 
Moreover, in finite-dimensional lattices, (1) together with its dual 
implies modularity; what can be said generally of lattices which 
together with their duals are Af-symmetric? 
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