MODULARITY IN BIRKHOFF LATTICES
L. R. WILCOX

The purpose of this note is to identify upper semi-modular lattices
originally defined by G. Birkhoff! and subsequently studied by Dil-
worth? with those M-symmetric lattices® (introduced independently
by the author without assumption of chain conditions) which satisfy
a condition of finite dimensionality.

The definitions and notations are these. In a lattice L, a > b(b <a)
means that a “covers” b, that is, a > b, together with a =x =5 implies
x=a or x=b; (b, c) M means (a+d)c=a-+bc for every a <c (where
a+b, ab are the “join” and “meet” respectively of ¢, ). We say that
L is M-symmetric if the binary relation M is symmetric; L is a
Birkhoff lattice if

1 a, b > ab implies ¢ + b > a, b;

L is of finite-dimensional type* if for every a <b there exists a finite
“principal chain”
a1 < ay < -+ < @y,

with a1=a, a,=b. When a, b satisfy this condition for a specific #,
we say that b is n—1 steps over a.

The properties of the relation M are given in part in a previous
paper.’ Additional properties needed here are contained in the follow-
ing lemma.

LemmMA 1. Suppose b, ccL. Then
(@) (b, c) M if and only if bc Sa =c implies (a+b)c=a;
(b) <f (b, c) M, then (b, ¢') M for bc Sb’ b, be=c¢' =c.

Proor. The forward implication in (a) is obvious. To prove the
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converse, let a Sc¢. Then a’ =a+bc has the property bc Sa’ <c, whence
(¢ + b)c = (a + bc + b)c = (o’ + b)c
=o' = a + bc.
To prove (b) we use the condition in (a). Let b’c’ £a =c’. Then
(a+ ) = (@a+b)ec’ =ac’ =¢ = (a4 b)),
whence (b) follows.
THEOREM 1. Every M-symmetric lattice is a Birkhoff lattice.

PRrOOF. Suppose a, b>ab. Then it is immediate that a+b>a, b.
To prove a+b>a, let a<c=<a-+b. Since b=cb=ab, we have cb=>
or ¢b=ab from the hypothesis b> ab. If cb =5, then a+b=c, whence
¢=a++b. Suppose cb =ab. We shall prove (¢, b)) M. Let ab=cb=x =b.
Then x =ab or x=>5b, whence either

(x4 ¢)b = (ab+c)b = (cb+ c)b=cb=x,

(x4+c)b= B+ c)b=0b =,

and it follows by Lemma 1 (a) that (¢, b)) M. Now the symmetry of M
yields (b, ¢) M, and thus, since bc Sa =c,

c= (a+bc=a.

In all cases c=a+b or c=a, and consequently a-+b>a. Similarly
a+b>b.

REMARK. The theorem just proved generalizes the known result®
that every modular lattice is a Birkhoff lattice, since modular lattices
are M-symmetric.

In order to consider the converse of Theorem 1, let, for the pur-
poses of the following lemmas, L be a fixed Birkhoff lattice of finite-
dimensional type.

LemMA 2. If b, cEL and ¢ > be, then b+c>b.

Proor.” Observe that b=bc; if b=bc, b<c, and b+c=c> bc=>. If
b>bc, then there exists n=1, 2, - - - such that b is # steps over bc.
If n=1, the result is obvious from condition (1) defining a Birkhoff
lattice. Suppose the result has been proved for all b, ¢ for which b is

or

¢ Birkhoff, loc. cit. p. 34.

" This is MacLane's second “exchange axiom” in the convex lattice of all x2bc;
as such it follows for finite-dimensional lattices from remarks on p. 63 of Birkhoff.
Since L need not be finite-dimensional, we give the proof in full.
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k steps over bc, and let b be k41 steps over bc. Clearly there exists
b’ <b such that b’ is k steps over bc. Since b'cSbc=b’c, we have
¢>b’c, and by the induction hypothesis applied to &’, ¢ it follows that
b'+4c>b'. But b’ =S (d'+c)b<b, whence (b'+c)b=>b' or (b'+c)b=b.
In the latter case b’ <bSb’+¢, and thus b=5'+c, whence ¢ b, con-
trary to ¢>bc. Consequently (b’+c)b=>b’. Since b’+c, b> (b'+c)b,
(1) yields
b+c=b+ @ +c¢c) >b.

LemwMma 3. If b, cEL, ¢> be, then (c, b) M, (b, c) M.

Proor. If bc<a =c, then a=bc or a=c, so that either
(a + b)c = (b¢c + b)c = bc = a,
(@a+dc=(+bc=c=aq,

and (b, ¢) M. Now suppose bc=a =b. Then bcSac=bc yields ac=bc.
Hence c¢>ac, and a+c>a by Lemma 2. But a=(ea+c)b=a+tc,
whence (¢+c)b=a or (a+c)b=a-+c. In the latter case a+¢<b, and
¢<b, which is impossible. Hence (¢-+c¢)b=a, and (c, b) M.

LeMMA 4. Suppose b, c€L, (b, c)M. Then bcSa=bh, a+c=b+c
implies a =b.

or

ProoF. If ¢=bc, that is, ¢Sb, or if ¢ is one step over bc then
(¢, b) M either by direct verification or by Lemma 3; hence

a=a+ch=(@+c)b=(b+c)bd=0

Suppose the result holds for all b, ¢ with ¢ # steps over bc, and let 3, ¢
satisfy the hypotheses, ¢ being n+41 steps over bc. Then there exists
¢’ with bc=c’<c, where ¢’ is n steps over bc. Since (b, ¢/)M by
Lemma 1 (b), and since b¢’ =bc<a b, we need only verify a4-¢’
=b+4c¢’ in order to show a=b. Since (@, ¢)M by Lemma 1 (b),
(¢’"+a)c=c'. Thus

c>c = (4 a),

and by Lemma 2,
c+b=ct+a=c+ (" +a) > +a.

But
d+ae=scd+b=Zc+,
whence
d+b=¢c+a or ¢/+b=c+0b.

In the second case, since (b, ¢) M,
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¢ = (" +bc=(c+bc=c
which is impossible. This completes the proof.

THEOREM 2. Every Birkhoff lattice L of finite-dimensional type is
M-symmetric.

ProoF. Suppose (b, ¢)M, and in proof of (¢, b) M let bc=<a =b.
Define
by = (a+ 0)b = a;

we shall prove that by =a by applying Lemma 4 to @, b, ¢ in place of
a, b, c. First, (b1, ¢) M by Lemma 1 (b), since bc b1 <5, and (b, ¢) M.
Moreover,

bic =(a+ c)cb = bc £ ¢ £ by

Finally, a+c¢=b4, ¢, whence
at+c=bi+c=a+yq,

and a+c=0b;:+c. The hypotheses of Lemma 4 have been verified, and
thus a =b,, as was to be proved.

The effect of Theorems 1 and 2 is to show that not necessarily
finite-dimensional M-symmetric lattices are a true generalization of
the Birkhoff lattices. Moreover, the condition defining M-symmetry
does not lose its strength in infinite-dimensional cases as does condi-
tion (1). For example, an interval of real numbers ordered as usual
satisfies (1) vacuously; it is modular, hence M-symmetric. However,
define a lattice L as consisting of the closed real interval I=[0, 1],
ordered naturally, together with an element ¢, with 0<e<1, but
x<e, eLx, e£x for x €. This is a lattice in which the only covering
relations are €>0, 1> e Hence (1) is vacuously true, but M-sym-
metry fails violently, since (x, €)M for every xEL, but (¢, x) M is
false except for x=0, 1 or e.

Interesting questions are these. What infinite-dimensional generali-
zation of the Jordan chain condition holds in M-symmetric lattices?
Moreover, in finite-dimensional lattices, (1) together with its dual
implies modularity; what can be said generally of lattices which
together with their duals are M-symmetric?
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