
ON r-REGULAR CONVERGENCE 

PAUL A. WHITE 

In his paper On sequences and limiting sets [ l ] , 1 G. T. Whyburn 
introduced the notion of regular convergence. He showed that in the 
cases of 0 and 1 regular convergence (see definition below) that the 
limit of sequences of many simple topological sets is of the same type 
as the members of the sequence. I t is the purpose of this paper to 
extend some of these results to higher dimensions. The lack of simple 
characterizations of the higher dimension sets (such as the ^-sphere) 
makes the results much weaker than in the 0 and 1 dimensional cases. 

It is assumed throughout the paper that all sets lie in a compact 
metric space. All our complexes and cycles will be non-oriented, and 
the Vietoris cycles and chains ( F-cycles and F-chains) will have these 
as coordinates. The set of all points x whose distance from a set A 
is less than e will be denoted by U€(A). Finally we shall denote the 
boundary of an r-dimensional complex (or F-chain) zr by zr> 

DEFINITION. A sequence of closed sets (Ai) converging to a limit set A 
is said to converge r-regularly (—»r) if f or every € > 0 there exist numbers 
3 > 0 and N>0 such thatt if n>N, any r-dimensional V-cycle in A » of 
diameter less than 5 is ~ 0 in a subset of An of diameter less than e. 
If Ai-*sA for all s^r, we write Ai—>SrA [ l ] . 

DEFINITION. A Vietoris cycle £ r=(xJ) is called a projection cycle if 
limtH>00 (point set #J) =X and each x^QX. Clearly X is the smallest car­
rier [2] of£r. 

Note. Corresponding to any cycle £r = (xr
t) of a compact set F, there 

always exists a projection cycle £ ï ^ £ r in F. In fact if a convergent 
subsequence of (xr

t) is chosen, this set can be used as the set X of the 
definition. 

THEOREM 1. IfAi—trA, then for any e > 0 there exist positive numbers 
8 and N such that if xr+l is a simplex of Ai (i>N) whose boundary has 
a V-chain realization [3] of diameter less than ô, then xr+1 has a V-chain 
realization of diameter less than e. 

PROOF. Let 8 and Nbe the numbers corresponding to e in the defini­
tion of r-regular convergence and consider a simplex xr+1 of Ai (i>N) 
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whose boundary has a F-chain realization rjr = (yr
t) of diameter less 

than 8. By the choice of 8 and N, rjr~0 in a subset of Ai of diameter 
less than e. Thus there is a F-chain £r+1 = (#J+1) of diameter less than e 
such that #+1=:yï. Clearly £r+1 is the F-chain realization of xr+1 of 
diameter less than €. 

THEOREM 2. If Ai—>SrA then for any e>0 there exist positive num­
bers Sr(e) and Nr(e) such that if x8 (s^r+1) is a ör(e)-simplex of Ai 
(i*zNr(e)), then x* has a V-chain realization in a subset of Ai of di­
ameter less than €. 

PROOF. The proof shall be by induction. 
The case r = 0 is clearly a direct consequence of the definition of 

0-regular convergence where the numbers S°(e) and N°(e) are the 
numbers 8 and N of the definition. 

Suppose the theorem to be true for r = k — 1 and consider the case 
r = k. Let € be an arbitrary positive number and S < €, N be the num­
bers corresponding to it in Theorem 1. Now by hypothesis there 
exist positive numbers 8*""1(S/3) and Nk"1(ô/3)i and we define 
«*(€)=min(«*-W3), 3/3) and Nk(e) = Nk-1(ô/3)+N. Let x< 
(sgjfe+1) be a o*(e)-simplex of Ai (i>Nk(e)). If s^k, we know that 
x9 has a F-chain realization of diameter less than 8/3 <e since 
«*(«)£ «*-W3) and Nk(e)>Nk"1(à/3). If s = £ + l , the boundary of 
xk+1 is a ^-dimensional 8fc-x(8/3)-cycle of Ai (i>Nk~1(ô/3)). Thus 
each simplex of this cycle has a F-chain realization in a subset of Ai 
of diameter less than 8/3. Furthermore we may suppose these realiza­
tions to be chosen so that common sides of two simplices have the 
same realizations. Now adding these F-chains for the simplices of the 
cycle we obtain a sequence of ^-dimensional cycles, a subsequence of 
which yields a ^-dimensional F-cycle of diameter less than ôk(e) 
+2(8/3) < 8/3+2(8/3) = 8 which is clearly a realization of the bound­
ary of xk+1. Now by the choice of 8, we know that xk+l has a F-chain 
realization in a subset of Ai (i>Nk(e)>N) of diameter less than €. 
Thus the theorem is true for r = k and hence for all cases. 

THEOREM 3. If Ai—»^(r — 1)A and C is the smallest carrier of an 
essential projection cycle £r=(ffJ) of A, then C can be expressed as 
lim^co Ci where d is the smallest carrier of a cycle & of Ai which will 
be essential for all sufficiently large i. 

PROOF. Since £r is essential, there is a positive number rj such that 
£r is not ^>„0 in C. Let €*>—»() be a sequence of positive numbers and 
let 3S*=min S ^ ^ e ^ ) , br-l{r)/3) (from Theorem 2). Choose Ni such 
that for i>Nivre have Uik(Ai)DA, USk(A)DAi and let Ni' = iW 
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+Nr~1(Sk/3)+Nr~1(ri/3). This defines a number Ni9 for each k9 and 
by letting Nk=Y?jwtiN" w e obtain a monotone increasing sequence of 
numbers. Consider a S^-cycle x)^) of £r that is not ^ „ 0 in Cand such 
that U$k(x

r
J{k))Z)C. Now pick a number n>Nk and let a0f ax, • • •, ag 

be the vertices of xr
J(^t then for each s a g , let 6, be a point of -4n 

such that p(a8, b6)<ôk. For each simplex (a»-0, a»x, • • • , a*r) in xr
m 

let (ôt-0, 6 t l, • • • , bir) be a simplex and let xr be the cycle consisting 
of these simplices. Clearly xr will be a 3ô*rcycle of Ant and we shall 
call any cycle obtained in this manner a S^-projection of xr^k) [ l ] . Our 
choice of 35* allows us to realize each simplex of xr in a subset of An 

of diameter less than ek/3, rj/3, from which we obtain a F-cycle real­
ization %n=(xr

jn) of xr in Usk/z(xr) as well as in Uv/z(xr). Now Cw, the 
smallest carrier of i£, will satisfy the conditions of our theorem, for 
CnCUnn(x*), x*CU8k(x

r
m), xr

mCUH(x')y CCUH(xr
m). Therefore, 

CnCUn(C)9 CCU€k(Cn) as (ek/3) + Ôk + Ôk<ek/3+ek/3+ek/3 = ek. 
Now for all n such that Nkèn<Nk+i, choose Cn corresponding to ek; 
then limn^oo Cn = C. 

Finally, since & C Uv/z(xr)9 we obtain by an application of the prism 
construction [4] the homology x)n^

f
1l/zxr for all j . Thus ££ is not 

~„/30 in Cn, for if it were then xr~„/z0; but by a S^-projection into 
C of the 77/3-complex bounded by xr we could obtain an ^-complex 
in C bounded by #J(t), contrary to our hypothesis. This shows that 
& is essential for sufficiently large n and concludes the proof. 

The necessity of the regular convergence in the preceding theorem 
is shown by the following example. Let Ai be the arc of the circle 
p = l where 0 varies from l/i to 2w — (l/i); then A will be the circle 
p = 1, and the 0-regular convergence is clearly violated. Now A is the 
smallest carrier of an essential 1-cycle, but the theorem cannot be 
satisfied, as Ai contains no essential 1-cycles. 

COROLLARY 3.1. If -4*-»^ (r — 1)A, where Ai is a Tr-set [5] for each 
i, then A is a Tr-set. 

PROOF. If the theorem were not true, then T would contain an 
essential r-dimensional cycle; but by the theorem there would exist 
essential r-dimensional cycles in some of the Ai, which contradicts 
their property of being 2Vsets. 

THEOREM 4. If Mi—^^rM and B is an irreducible membrane [2] for 
the homology £r = (xrj)~0 in M, then B can be expressed as l i m ^ ^ - B ^ B, 
where BiQMi is an irreducible membrane for a homology &~0 in Mi. 

PROOF. Let €k—>0 be a sequence of positive numbers and let 
3ôk = 5r(ek) and Nr(ek) be the numbers corresponding to ek in Theorem 
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2. Choose Ni such that for i>Ni, USk(Mi)DM, Uh(M)DMi, and 
let Ni' =Nr(ek)+Ni. This defines a number Ni' for each *, and 
by letting Nk=%2*~iNj' w e obtain a monotone increasing sequence 
of numbers. Since B is an irreducible membrane of £ r ^ 0 in M, we 
can find a F-chain rjr+1 = (yrj+1) in M such that yJ+1=^J for each j , 
and such that the point sets ^J+1 converge to B. Let j(&) be chosen 
such that yrjw is a S*-complex and ^ ( y J J ^ D - B , Z7€A(J5)33;J(t)

1- Let 
n be any fixed number greater than Nk, and project yfy) by means of 
a ô^-projection into a (3ÔA,)-complex yr+1 of lfw. Since 33& = ôr(€fc), 
each simplex of yr+l has a F-chain realization in a subset of Mn of 
diameter less than ek. Combining these realizations for all simplices 
of yr+1, we obtain a F-chain realization rtf1 — (y]*1) of yr+1 in 
U€k(y

r+1). Now a F-cycle can be formed from a subsequence of (y^1), 
and a further subsequence can be chosen so that the remaining 
(y]tX) converge to a set Bi. We shall denote this subsequence by 
the same notation rf^1 = (y^1) and we shall let Çn — ifjt1)- Let 
BnCBi be an irreducible membrane of the homology f£~.0 in Mn> 
Now U.{B)Dtift, Uh(yZlYDyr+\ V.t(y^)DBi DBn, BnDy^ 
Ut&^Dfâî, Uôk(y

r/h))DB; therefore USn(B)DBn and UUi(Bn) 
Z)B. Thus if we choose & and Bn in M„ corresponding to e& for all n 
such that Nk^n<Nk+h we shall have l ining Bn = B, and the con­
clusion of the theorem. 

The necessity of the regular convergence in the preceding theorem 
is shown by allowing Mi to be a totally disconnected set for each i 
such that Hm»-.»*, Af,- = M is a unit interval, and hence the irreducible 
membrane of the homology of the 0-cycle consisting of its end points. 
Now clearly the convergence is not 0-regular, and the conclusion of 
the theorem is violated since no 0-cycle of any Mi is ~ 0 . 

COROLLARY 4.1. If Mi->^rM and Ai-^A where Ai is an Ar-set [5] 
of Mi for each i, then A is an Arset of M. 

PROOF. Consider any irreducible membrane B of the homology 
£ r ~ 0 in M where £ r 0 4 . By Theorem 4 there exist cycles $ in Mi 
for each i and irreducible membranes (Bi) of the homologies £J^0 
in Mu such that Bi—>B. Also since Ai—>A and £ f 0 4 , we can choose 
a & in Ai for each i. By the definition of an -4r-set we have BiQAi 
for each i\ therefore jB=limtH(00 BiQlim^^ Ai— A. Thus A is an 
^4r-set of M. 

THEOREM 5. If Ci-^^rC, where d is the irreducible carrier of an 
T'dimensional projection cycle $ for each i, then C is the irreducible 
carrier of a projection cycle £r. Finally £r will be essential if and only if 
all but a finite number of the & are essential. 
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PROOF. Corresponding to ô»—»0, we can pick a subsequence of (Ci), 
which we shall suppose to be the whole sequence, such that 
Uti/iiCÙDC, Uti/z(C)DCi. Let (J = (4 ) ; then there exists a 8</3-
cycle xr

ini such that U8i/z(xr
ini)DCif Udi/Z(Ci)Dxr

lni. Project xr
ini into 

a 5*-cycle#Jof C. Clearly U$i(x
r
i)Z)C, i/a<(C)D#«« Pick a subsequence 

of (#J), which we shall suppose to be the whole sequence, forming a 
F-cycle £r. Now the point sets x\-+C and £r = (xT

i)C.C; therefore C 
is the irreducible carrier of £r. 

Now suppose that £r is not essential, then £ r~0 in C. Since 
Ci—>^rC, we know by a theorem of G. T. Whyburn [7] that C is 
an lcr; hence by a theorem of R. L. Wilder [3] the r-dimensional 
Betti number of C is a finite number n. A result of H. A. Arnold [8] 
implies that all but a finite number of the d have this same finite 
Betti number. Let %r

10, • • • , & > be a basis for r-dimensional cycles 
in C, which we can choose to be projection cycles with smallest carriers 
Coi, * * * > Con. By Theorem 3 there exist cycles $*, • • • , %ni with 
smallest carriers Cu, • • • , Cn% in d such that lim^*, Cji^Cj 
( /=1, • • • , w). The (£5i) will be linearly independent for i greater 
than some integer Nu for if not we can establish by a projection a 
linear dependence of the (£J0)» Since the Betti number of each C* for 
i greater than some number N2 is n, it follows that (£^) is a basis for 
cycles in Qîor i>N=Nx+N2. Thus ^J^^a^i^N) (a^Oor 1), 
where we can suppose that iV was chosen large enough so that the 
same linear combination holds for each i. Now by projecting the 
complexes bounded by £ï+]C"=iai£î*> w e c a n establish a homology 
€ r ~£"- i« i5- B ut £ r ~0; therefore a ,= 0 for all j . Thus £ ~ 0 in & 
for i>iV, which implies that £J is inessential. 

Conversely, if £r is essential then exactly the same procedure as 
was used in Theorem 3 can be used to show that all but a finite num­
ber of the £J are essential. 

The necessity of the regular convergence in the preceding theorem 
is shown by the following example. Let d be the collection of points 
(x=j/3i, y = 0) for j = 0, 1, • • • , 3*, then lim^*, C» = C=the unit in­
terval from 0 to 1, and clearly the 0-regular convergence is violated. 
Now each d is an essential O-dimensional F-cycle and hence is its 
own irreducible carrier, but C clearly cannot be the irreducible car­
rier of an essential 0-cycle as all 0-cycles are ~ 0 in C. 

THEOREM 6. If Bi—^-^rB, where Bi is an irreducible membrane f or 
an homology of a projection cycle £ ^ 0 in Bi for each i, then B is an 
irreducible membrane of an homology of a projection cycle £ r ^0 in B. 

PROOF. In the proof of Theorem 5 we have seen how to establish 
a projection cycle £r in B. Furthermore by projections into B of the 
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chains bounded by the £J, we can establish an homology £r~Q in B. 
It remains to show that £r is not ~ 0 in a proper subset Bf of B. To 
this end suppose £r~0 in J5'. By Theorem 4, jB' = lim» 0̂0 B{ where 
Bi is an irreducible membrane of the homology £J^0 in Bi. (Since 
the carrier of £r was chosen as the limit of the carriers of the & we 
can choose the BI corresponding to the homologies of our original £J.) 
Thus jB/ = lim» 0̂0 B/=lim»H.oo-B< = 5 and B is an irreducible mem­
brane of £ r~0 in B. 

THEOREM 7. If Ml—^^rM, where Ml is an r-dimensional closed 
Cantorian manifold [6] for each i, then if dim M^rf M is also a closed 
r-dimensional Cantorian manifold. 

PROOF. Since pr(Ml)9^0 for each i (pr(Ml)—the rth dimensional 
Betti number of ikfJ) and the convergence is regular, it follows that 
pr(M)7é0. Next suppose Mr is a proper closed subset of M with 
pr(M') 7*0. Then there exists an essential (projection) cycle £r with 
irreducible carrier C in M'. By Theorem 3, C=lim/uoo C/b, where Ck 
is the smallest carrier of an essential cycle £J in Ml. Now for some 
integer n, Cn will be a proper closed subset of MT

ni but by the defini­
tion of M£, £r(Cn) = 0 contrary to the fact that & is essential. Thus 
pr{M') = 0 for every proper closed subset M' of M. Finally dim M^r, 
for pr(M)7*0, implies the existence of an essential £r in M. Since by 
hypothesis dim M ^ r , we have dim M—rt and M is an r-dimensional 
closed Cantorian manifold. 
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