ON -REGULAR CONVERGENCE
PAUL A. WHITE

In his paper On sequences and limiting sets [1],* G. T. Whyburn
introduced the notion of regular convergence. He showed that in the
cases of 0 and 1 regular convergence (see definition below) that the
limit of sequences of many simple topological sets is of the same type
as the members of the sequence. It is the purpose of this paper to
extend some of these results to higher dimensions. The lack of simple
characterizations of the higher dimension sets (such as the n-sphere)
makes the results much weaker than in the 0 and 1 dimensional cases.

It is assumed throughout the paper that all sets lie in a compact
metric space. All our complexes and cycles will be non-oriented, and
the Vietoris cycles and chains (V-cycles and V-chains) will have these
as coordinates. The set of all points x whose distance from a set 4
is less than € will be denoted by U.(4). Finally we shall denote the
boundary of an r-dimensional complex (or V-chain) 2" by 27.

DEFINITION. A sequence of closed sets (A;) converging to a limit set A
is said to converge r-regularly (—r) if for every € >0 there exist numbers
6>0 and N>O0 such that, if n> N, any r-dimensional V-cycle in A, of
diameter less than & is ~0 in a subset of A, of diameter less than e.
If Ai—sA for all s<r, we write A;—=rA [1].

DEFINITION. A Vietoris cycle £"=(x}) is called a projection cycle if
lim;.., (point set x3) =X and each x;CX. Clearly X is the smallest car-
rier [2] of &

Note. Corresponding to any cycle &= (x}) of a compact set F, there
always exists a projection cycle §~é& in F. In fact if a convergent
subsequence of (x7) is chosen, this set can be used as the set X of the
definition.

THEOREM 1. If A;—rA, then for any € >0 there exist positive numbers
8 and N such that if x™+' is a simplex of A; (¢> N) whose boundary has
a V-chain realization [3] of diameter less than 8, then x™+* has a V-chain
realization of diameter less than e.

Proor. Let 6 and N be the numbers corresponding to € in the defini-
tion of 7-regular convergence and consider a simplex x™*! of 4; (¢ > N)
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whose boundary has a V-chain realization %"= (%}) of diameter less
than 8. By the choice of & and N, 9"~0 in a subset of 4; of diameter
less than e. Thus there is a V-chain £+1= (x;*!) of diameter less than €
such that #{*'=4}. Clearly {+! is the V-chain realization of x+! of
diameter less than e.

THEOREM 2. If A;— =rA then for any €>0 there exist positive num-
bers 67(e) and N7(€) such that if x* (sSr+1) is a 67(e)-simplex of A;
(6= N*(e)), then x* has a V-chain realization in a subset of A; of di-
ameler less than e.

ProoF. The proof shall be by induction.

The case r=0 is clearly a direct consequence of the definition of
O-regular convergence where the numbers §°e) and N°(e) are the
numbers § and N of the definition.

Suppose the theorem to be true for =%k —1 and consider the case
r=Fk. Let € be an arbitrary positive number and é <e, N be the num-
bers corresponding to it in. Theorem 1. Now by hypothesis there
exist positive numbers 06*~1(6/3) and N*-1(8/3), and we define
o%(¢) =min (8*-1(8/3), &/3) and N*(e)=N*1(§/3)+N. Let «x*
(s=k+1) be a &*(e)-simplex of 4; (4> N*(e)). If s<k, we know that
x* has a V-chain realization of diameter less than 6/3 <e since
o%(e) < 8*1(6/3) and N*(e) >N*¥1(5/3). If s=k-+1, the boundary of
x%t+1 is a k-dimensional §*-1(8/3)-cycle of 4; (¢>N*-1(§/3)). Thus
each simplex of this cycle has a V-chain realization in a subset of 4;
of diameter less than §/3. Furthermore we may suppose these realiza-
tions to be chosen so that common sides of two simplices have the
same realizations. Now adding these V-chains for the simplices of the
cycle we obtain a sequence of k-dimensional cycles, a subsequence of
which yields a k-dimensional V-cycle of diameter less than &%*(e)
+2(8/3) <6/3+2(6/3) =& which is clearly a realization of the bound-
ary of ¥+, Now by the choice of 8, we know that x*+1 has a V-chain
realization in a subset of 4; (> N*(e¢) > N) of diameter less than e.
Thus the theorem is true for r=Fk and hence for all cases.

THEOREM 3. If A;(—=(r—1)A and C is the smallest carrier of an
essential projection cycle &= (x]) of A, then C can be expressed as
lim;., C: where C; is the smallest carrier of a cycle & of A; which will
be essential for all sufficiently large i.

Proor. Since &7 is essential, there is a positive number % such that
&r is not ~,0 in C. Let ¢,—0 be a sequence of positive numbers and
let 36x=min 671(ex/3), 6"1(n/3) (from Theorem 2). Choose Ny such
that for ¢> N/ we have U;,(4¢)D4, U (4)DA; and let N{' =Ny
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+N™1(8;/3)+ N*—1(5/3). This defines a number N/’ for each %, and
by letting Ny=)_%.,N}' we obtain a monotone increasing sequence of
numbers. Consider a §;-cycle %}y of £” that is not ~,0 in C and such
that U, (xjx) D C. Now pick a number #> Ny and let ao, a1, * * +, @,
be the vertices of xjy, then for each s=g, let b, be a point of 4,
such that p(a., b,) <0 For each simplex (@i, @iy, * -+, as,) in &y,
let (bsy biyy ¢+ +, bs,) be a simplex and let x* be the cycle consisting
of these simplices. Clearly x* will be a 38;-cycle of 4,, and we shall
call any cycle obtained in this manner a §i-projection of xjs [1]. Our
choice of 34 allows us to realize each simplex of x” in a subset of 4,
of diameter less than €/3, /3, from which we obtain a V-cycle real-
ization &, = (x},) of x" in Us,s(x7) as well as in U, s(x"). Now C,, the
smallest carrier of £, will satisfy the conditions of our theorem, for
CaCUeys(x7), 2" CUsy(%jw), 5 C Usy(x7), CCUs(xjny). Therefore,
C.CUL(C), CCUL(C,) as (ex/3)+0r+0r<er/3+e€r/3+er/3=¢;.
Now for all # such that N =# < Ni41, choose C, corresponding to €;
then lim,., Cn=C.

Finally, since £&,C U,/s(x"), we obtain by an application of the prism
construction [4] the homology «},~ " for all j. Thus £ is not
~ w30 in C,, for if it were then x"~,s0; but by a dz-projection into
C of the 7/3-complex bounded by x" we could obtain an %-complex
in C bounded by %}y, contrary to our hypothesis. This shows that
&, is essential for sufficiently large # and concludes the proof.

The necessity of the regular convergence in the preceding theorem
is shown by the following example. Let 4; be the arc of the circle
p=1 where 0 varies from 1/7 to 2w —(1/2); then 4 will be the circle
p=1, and the 0-regular convergence is clearly violated. Now A4 is the
smallest carrier of an essential 1-cycle, but the theorem cannot be
satisfied, as 4; contains no essential 1-cycles.

COROLLARY 3.1. If A;— =< (r—1)A, where A; is a T,-set [5] for each
1, then A is a T,-set.

Proor. If the theorem were not true, then T" would contain an
essential -dimensional cycle; but by the theorem there would exist
essential r-dimensional cycles in some of the 4;, which contradicts
their property of being T,-sets.

THEOREM 4. If M~ <rM and B is an irreducible membrane [2] for
the homology &7 = (x})~0 in M, then B can be expressed as lim;..B;=B,
where B;CM; is an irreducible membrane for a homology £~0 in M,.

Proor. Let €,—0 be a sequence of positive numbers and let
30, =0"(ex) and N7(ex) be the numbers corresponding to €; in Theorem
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2. Choose Ny such that for :>N{, U, (M) DM, Us(M)DM; and
let N{’ =Nr(e;)+N{. This defines a number N/’ for each k, and
by letting Ny=> ¥, N}’ we obtain a monotone increasing sequence
of numbers. Since B is an irreducible membrane of £'~0 in M, we
can find a V-chain 9™+1=(y]*') in M such that §;"'=x] for each j,
and such that the point sets ;' converge to B. Let j(k) be chosen
such that ¥} is a dx-complex and U, (yj§) DB, U.(B) Dy} Let
n be any fixed number greater than N, and project yjf' by means of
a di-projection into a (38x)-complex yr+! of M,. Since 36r=056"(ex),
each simplex of y+1 has a V-chain realization in a subset of M, of
diameter less than €;. Combining these realizations for all simplices
of y™+!, we obtain a V-chain realization 7,"'=(y;f') of y™*! in
U, (y7*1). Now a V-cycle can be formed from a subsequence of (y}%),
and a further subsequence can be chosen so that the remaining
(") converge to a set B,. We shall denote this subsequence by
the same notation 7,7 =(yt') and we shall let & =(y}I"). Let
B,CB, be an irreducible membrane of the homology &,~0 in M,.
Now Ud(B)Dyid, Us(ih ) Dy, Tqly™*)DB) DB, B.,Dy
Us, (3™ Dy Us(978) DB; therefore Use,(B)DBn and Use,(Ba)
DB. Thus if we choose £, and B, in M, corresponding to € for all »
such that Ny=#n<Np4u, we shall have lim,., B,=B, and the con-
clusion of the theorem.

The necessity of the regular convergence in the preceding theorem
is shown by allowing M; to be a totally disconnected set for each ¢
such that lim;., M;= M is a unit interval, and hence the irreducible
membrane of the homology of the 0-cycle consisting of its end points.
Now clearly the convergence is not O-regular, and the conclusion of
the theorem is violated since no 0-cycle of any M; is ~O0.

COROLLARY 4.1. If M;—=<rM and A;—A where A;is an A,set [5]
of M; for each i, then A is an A,-set of M.

Proor. Consider any irreducible membrane B of the homology
£'~0 in M where £”CA. By Theorem 4 there exist cycles £ in M;
for each ¢ and irreducible membranes (B;) of the homologies &~0
in M;, such that B;,—B. Also since 4;—A4 and £"CA, we can choose
a & in A4; for each 4. By the definition of an 4,-set we have B;CA4;
for each 7; therefore B=lim;., B;Clim;.,, Ai=A. Thus 4 is an
A,-set of M.

THEOREM 5. If Ci—=rC, where C; is the irreducible carrier of an
r-dimensional projection cycle & for each i, then C is the irreducible
carrier of a projection cycle £'. Finally & will be essential if and only if
all but a finite number of the & are essential.
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Proor. Corresponding to 6,—0, we can pick a subsequence of (C;),
which we shall suppose to be the whole sequence, such that
Usys(Ci) DC, Usys(C)DCi. Let & =(xy); then there exists a §;/3-
cycle x4, such that Usys(xl,;) DCi, Usys(Ci) Dain,. Project wf,; into
a d;-cycle «f of C. Clearly Us,(x7) DC, Us,(C) Dx}. Pick a subsequence
of (x}), which we shall suppose to be the whole sequence, forming a
V-cycle £7. Now the point sets x;—C and &= (x}) CC; therefore C
is the irreducible carrier of £*.

Now suppose that & is not essential, then £~0 in C. Since
Ci—=rC, we know by a theorem of G. T. Whyburn [7] that C is
an lc'; hence by a theorem of R. L. Wilder [3] the r-dimensional
Betti number of Cis a finite number #. A result of H. A. Arnold [8]
implies that all but a finite number of the C; have this same finite
Betti number. Let &, + -+, &, be a basis for r-dimensional cycles
in C, which we can choose to be projection cycles with smallest carriers
Coy * ++, Con. By Theorem 3 there exist cycles &, « -+, &4 with
smallest carriers Cy, ++ -, Cui in C; such that lim,., C;i=C;
G=1,+:+, n). The (&) will be linearly independent for ¢ greater
than some integer Nj, for if not we can establish by a projection a
linear dependence of the (£)). Since the Betti number of each C; for
¢ greater than some number N, is #, it follows that (&) is a basis for
cycles in Cifor > N = Ni+ N,. Thus £~ 1 &y > N) (a;=0o0r 1),
where we can suppose that NV was chosen large enough so that the
same linear combination holds for each 7. Now by projecting the
complexes bounded by &+ . a;t}, we can establish a homology
g~ " a8 But £~0; therefore a;=0 for all j. Thus £~0 in C;
for > N, which implies that £ is inessential.

Conversely, if £r is essential then exactly the same procedure as
was used in Theorem 3 can be used to show that all but a finite num-
ber of the £ are essential.

The necessity of the regular convergence in the preceding theorem
is shown by the following example. Let C; be the collection of points
(x=j/3% y=0) for j=0, 1, - - -, 3¢, then lim;,, Ci=C=the unit in-
terval from 0 to 1, and clearly the O-regular convergence is violated.
Now each C; is an essential 0-dimensional V-cycle and hence is its
own irreducible carrier, but C clearly cannot be the irreducible car-
rier of an essential O-cycle as all 0-cycles are ~0 in C.

THEOREM 6. If B;— <rB, where B; is an irreducible membrane for
an homology of a projection cycle £~0 in B; for each 1, then B is an
irreducible membrane of an homology of a projection cycle £'~0 in B.

PRroOF. In the proof of Theorem 5 we have seen how to establish
a projection cycle £7 in B. Furthermore by projections into B of the
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chains bounded by the £, we can establish an homology £*~0 in B.
It remains to show that &7 is not ~0 in a proper subset B’ of B. To
this end suppose £&'~0 in B’. By Theorem 4, B’=lim;., B! where
B! is an irreducible membrane of the homology &~0 in B;. (Since
the carrier of £ was chosen as the limit of the carriers of the £, we
can choose the B/ corresponding to the homologies of our original £.)
Thus B’=lim;., B! =lim;., B;=B and B is an irreducible mem-
brane of £7~0 in B.

THEOREM 7. If Mi—=rM, where M; is an r-dimensional closed
Cantorian manifold [6] for each i, then if dim M <r, M is also a closed
r-dimensional Cantorian manifold.

ProorF. Since p7(M;)#0 for each 7 (pr(M;) =the rth dimensional
Betti number of M;) and the convergence is regular, it follows that
p7(M)#0. Next suppose M’ is a proper closed subset of M with
p7(M'")5£0. Then there exists an essential (projection) cycle & with
irreducible carrier C in M’. By Theorem 3, C=lims., Ci, where Ci
is the smallest carrier of an essential cycle & in M;. Now for some
integer n, C, will be a proper closed subset of M}, but by the defini-
tion of M, p7(C,) =0 contrary to the fact that £, is essential. Thus
p"(M'") =0 for every proper closed subset M’ of M. Finally dim M =r,
for pr(M)s£0, implies the existence of an essential & in M. Since by
hypothesis dim M =7, we have dim M =r, and M is an r-dimensional
closed Cantorian manifold.
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