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The problem treated is the evaluation of Pn(a, m)t the probability 
that a determinant of order n having integral elements be congruent 
to a modulo m. By "probability" is meant the fraction obtained by 
dividing the number of favorable cases by the number of possible 
cases: let each element of the determinant range over the values 
1, 2, • • • , m; among the ra"2 possible determinants let g be the num­
ber which are congruent to a modulo m; then Pn(a, m) =g/mn2. 

This problem has been investigated by Jordan,1 whose solution 
involves the function 

(1) Snip, X) = E £-<xi+x2+-+x-i) (» è 2), 

where the sum ranges over all values satisfying the inequality 

0 ^ Xi S X2 ^ • • • £ Xn-i g X. 

We use here a different method and obtain results more explicit 
than (1). Our results can be obtained from Jordan's, but it is as 
convenient to derive them independently. 

I t will be convenient to use a result stated by Hull,2 which in our 
notation can be written 

(2) Pn(a, mi)Pn(a, tn2) = Pn(a, mm?) if (wi, m2) = 1. 

We shall prove 

(3) Pn(a, m) = Pn(q, m) where q = (a, m), 

so that our problem has been reduced to the determination of 
Pn(p

a, Pk), P being a prime. This can be evaluated by means of 

(4) Pn(p", p*) = {*(#*"«)}-l{P»{0, p«) - Pn(0, r + 1 ) } 

(0 ^ a < k), 
and 

M-n-1 

(5) p„(o, p") = i - n (i - p-r) (* * i). 
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1 C. Jordan, Sur le nombre des solutions de la congruence | a a | ^A (mod M), J. 
Math. Pures Appl. (6) vol. 7 (1911) pp. 409-416. 

2 Ralph Hull, Congruences involving Wh power's', Trans. Amer. Math. Soc. vol. 34 
(1932) p, 910, 
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the Euler ^-function being involved in (4). We now prove these 
results. 

1. Two lemmas. The first is due to C. Jordan.8 Let Nn{d> m) repre­
sent the number of different sets a%, a^ • • • , an of n positive integers 
not greater than m such that (#i, a^ • • • , an, nt)=d, d being any 
divisor of m. This, with d— 1, is Jordan's generalization of the Euler 
^-function. 

LEMMA 1. 

Nn(d,m) = Nn(hm/d); 

Nn(U ab) = Nn(l, a)Nn(l, b) if (a, b) = 1; 

Nn(l, pk) = (pk)n - (pk~x)n for k ^ 1, p any prime. 

The first equation reduces our function to that of Jordan, and the 
other equations are his. 

LEMMA 2. Let a\, a2> • • • , an be any integers such that (ai, a%, • • • , 
an, m) = l. Then integral solutions X* can be found for the congruence 

n 

(6) X) a&i — 1 (m0(l m)> 

such that Xi is prime to m. 

Let xi, x2, • • • , xn be any solution of the congruence (6). Let c be 
defined by c = (02, a3, • • • , an, m), so that we have (xi, c, m) = 1. Also 
there exist integers h^ kz, • • • , kn such that 

n 

^2, ki&i = c (mod m). 

Let b be the product of those primes which divide m but not x%. 
Then we set 

n 

Xi = ^1 + X) hkidi, \j = Xj — bkj-at (j = 2, 3, • • • , w), 

noting that these give a solution of (6). We have Xi ^xi+bc (mod w). 
Let p be any prime factor of m. If £|#i, then p\b and £|c. If p\xi, 
then £ IÔ. Hence Xi is prime to m. 

2. A recursion formula. Consider now the determinant of order n 
8 Traité des substitutions, Paris, 1870, pp. 95-97, or L. E. Dickson, History of the 

theory of numbers, vol. 1, p. 147. 
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with arbitrary integral elements modulo m. Let au #2, • • • , an and 
&i, &2, • • • , bn designate the elements of the first two rows, respec­
tively. We shall assume that the g.c.d. of the elements of the first row 
and m has been factored and placed in front of the determinant, so 
that {au #2, * * * » an> m) = 1. Using Lemma 2 we choose Xi, X2, • • • , Xn 

so that (6) holds with (Xi, m) = 1. We now apply the following trans­
formation to the determinant. Multiply the first column by Xx. This 
of course multiplies the value of the determinant by Xi, which is im­
material since in this section we are concerned with divisibility by tn, 
that is, with Pn(0, m). Next we add to the elements of the first column 
the elements of the succeeding columns multiplied by X2, X3, • • • , Xw, 
respectively. Having obtained 1 in the first place, we use it to elimi­
nate all succeeding elements of the first row (by subtracting from the 
ith column the elements of the first column multiplied by #,-, for 
i = 2, 3, • • • , ri)> so that the first row is now 1, 0, 0, • • • , 0. Suppose 
the second row has become ch c% • • • , cn. 

We propose to show that the transformation thus effected on the 
second row (and hence on all succeeding rows) is unique in the follow­
ing sense: for any fixed set of a's in the first row and any set of c's, 
there is a unique set of b's which is transformed into the set of c's. 
The b's and c's are connected by the equations 

n 

Ci = 2~i XjJ/i Ci = bi — üiCi (i = 2, 3, • • • , n). 
1-1 

The determinant of the transformation has the value Xi (prime to 
m), and the result follows. 

Now the value modulo m of the transformed determinant is de­
duced from the minor of the leading element, and since some divisor 
(say d) of m was removed from the elements of the first row, we are 
interested in the probability Pw-i(0, m/d) that m/d divide this prin­
cipal minor. There are Nn(d, m) arrangements of the first row having 
d for the g.c.d. of the elements and mt and for each of these arrange­
ments there are tnn2~~n possible arrangements for all the other rows 
(m possibilities for each element). Among these the number of favor­
able cases, that is, determinants divisible by m, is 

tnn*-nNn(d, m)Pn_i(0, m/d). 

By considering all possible divisors d of m we get the total number of 
favorable cases. But this total number can also be obtained by mul­
tiplying the number m*2 of possible determinants by Pw(0, m). Hence 
we have 
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m*2Pn(0, m) = Yltnn2-nNn(d, w)Pw-i(0, tn/d). 
d\m 

Using the first equation in Lemma 1 and the fact that m/d ranges 
over the divisors of m as d does, and dividing by wn2~n, we obtain 

(7) tnnPn(0, m) = £ Nn(l, J)Pn-i(0, d) (n > 1, m à l). 
d\m 

If m is a power of a prime, say £*, we have 

(8) pknPn(Of P*) » £ #„(1, ^«)Pw-l(0, f «). 
a=0 

3. The formula for P„(0, pk). Subtracting equation (8) from the 
corresponding equation with k replaced by k + 1, and using the last 
formula in Lemma 1, we obtain the recursion formula 

p(k+l)npn(0i pk+l) = pknpn(0t pk) + (p(k+l)n _ phf^p^fa ph+l^ 

It is convenient here to set Ç* = l—Pw(0, ph) and q=p~~1* Making 
these substitutions we have 

(9) Qn =gQn + ( l - î ) Q - i . 

We shall now prove 
h+n-l 

(10) Q» = EL (1 - i) (* - 0, 1, 2, • • • ; n = 1, 2, 3, • • • ). 

This result is trivial for k = 0 and all w, and for # = 1 and all &. Assume 
it true for k^K and all w, and for k=K+l and n<N. To complete 
the induction we must prove it for k=K+l and n~N. By (9) and 
the induction hypotheses we have 

_ , , A. K+N-l „ JT+JV-1 

e*+W n d-/) + (i-/) n a-») 

- n a - q\ 
This proves (10) and equation (5) follows. 

4. Proofs of (3) and (4). In the light of (2), we need demonstrate 
(3) for tn=pk only. We wish to prove, then, that the number of de­
terminants congruent to pa (mod pk) equals the number congruent 
to cpa, where (c, £) = 1 and a<k. Now any one of the former type 
gives one of the latter if the first row (say) is multiplied by c, and con-
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versely if the first row is multiplied by the inverse of c (mod ph). 
This inverse exists, and the correspondence is one-to-one, because c 
is prime to p. This proves (3). 

The sum of the probabilities Pn(apa, pk), where a runs through 
the values 1, 2, • • • , pk~~a, is clearly the probability that a determi­
nant be divisible by p«. The terms of this sum can be simplified and 
collected by use of (3), and we have 

(11) PB(0, p) = £ <Kp*-«-')Pn(p<>+', p*). 

Replacing a by a+1, and subtracting the resulting equation from 
(11), we arrive at (4). 

PURDUE UNIVERSITY 

ON THE NOTION OF THE RING OF QUOTIENTS 
OF A PRIME IDEAL 

CLAUDE CHEVALLEY 

Let o be a domain of integrity (that is, a ring with unit element and 
with no zero divisor not equal to 0), and let it be a prime ideal in o. 
We can construct two auxiliary rings associated with u: the factor 
ring o/u, composed of the residue classes of elements of o modulo u, 
and the ring of quotients ou, composed of the fractions whose numera­
tor and denominator belong to o, but whose denominators do not 
belong to u. These constructions are of paramount importance in 
algebraic geometry; if o is the ring of a variety Vf there corresponds 
to u a subvariety U of V; o/u is the ring of U, whereas the ring ou 

is the proper algebraic tool to investigate the neighborhood of U with 
respect to V. 

Now, the local theory of algebraic varieties involves the considera­
tion of rings which are not domains of integrity (this, because the 
completion of a local ring may introduce zero divisors). Let then o 
be any commutative ring with unit element, and let again u be a 
prime ideal in o. We may define the factor ring o/u exactly in the 
same way as above, but we cannot so easily generalize the notion 
of the ring of quotients ou. If there exist zero divisors outside u, these 
zero divisors cannot be used as denominators of fractions, which 
shows that the definition of ou cannot be extended verbatim. If we 
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