
ON THE EXTENSION OF DIFFERENTIABLE FUNCTIONS 

HASSLER WHITNEY 

The author has shown previously how to extend the definition of 
a function of class Cm defined in a closed set A so it will be of class Cm 

throughout space (see [l]).1 Here we shall prove a uniformity prop­
erty: If the function and its derivatives are sufficiently small in A, 
then they may be made small throughout space. Besides being 
bounded, we assume that A has the following property: 

(P) There is a number co such that any two points x and y of A 
are joined by an arc in A of length less than or equal to œrxy (rxy being 
the distance between x and y). 

This property was made use of in [2]; its necessity in the theorem 
is shown by two examples below. 

A second theorem removes the boundedness condition in the first 
theorem, and weakens the hypothesis (P) ; its proof makes use of the 
proof of the first theorem. We remark that in each theorem, as in [ l ] , 
the extended function is a linear functional of its values in A. 

The proof of Theorem I is obtained by examining the proof in [ l ] ; 
hence we assume that the reader has this paper before him, and we 
shall follow its notations closely. 

THEOREM I. Let A be a bounded closed set in n-space E with the prop-
erty (P), and let m be a positive integer. Then there is a number a with 
the following property. Letf{x) be any f unction of class Cm in A, with 
derivatives fk(x) (o,k = ki+ • • • +kn^m). Suppose 

I fk(x) | < rj (xEA, ak^ m). 

Then f{x) may be extended throughout E so that 

| fk{x) | < arj (x £ E, <rh ^ m). 

Let d be the diameter of A, or 1 if this is larger, and let R be a 
spherical region of radius 2d with its center at a point of A. Set 
ƒ(#)=() in E—R. Then the extension o f / i n R— A given in [ l ] will 
be shown to have the property, using 

a = 2n(mï)n(m + l)Zn(433n1/2dü>)mcN, 

where Nand c are as given in [l , §§11,12]. Note that 433 = 4 - 1 0 8 + 1 . 

Presented to the Society, September 13, 1943 ; received by the editors November 
27,1943. 

1 Numbers in brackets refer to the references cited at the end of this paper. 
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Set B~A^J(R—R). We show first that for any points x't x" of J5, 

| RkW; %") |. < /3*v7'%, P = 2n(m + 1)V\ 

Suppose first that xr and x" are in A. Let C be a curve in A joining 
them, of length less than or equal to corx>x>>. The inequality is then 
a consequence of [2, Lemma 3]. Suppose next that one of the points 
is in A, and the other is in ÜR-R (the case that both are in S—R is 
trivial). By [l, (3.1)], since 7V*"£^dàl, 

I Rk(x'; x") | ^ „ + £ ,/;.„ ^ rr;?Ji + E i] 

^ (m+ 1) rx>x>>rj. 

Now take any x in R—B. Let 3*/4 be the distance from x to i3, 
and let x* be a point of B distant ô*/4 from #. Say x is in the cube C 
of the set of cubes K8; let /xx, • • • , I\t be those Jx with points in C 
(see [l, §11]). Now yv is the center of / „ and #" is a nearest point 
of 5 to yv. As noted in [l, (9.1)], fyv and ry»v each lie between 
Ô*/8 and ô*/2. Since r ^ < 5 * / 2 , we have 

r*v# < ô*, rxxv < ô*. 

The definition of f in [l, §11] together with [l, (6.3)] gives 

_ Rk+i(xv; x*) 
?v,k(x) = \f>k(x; xv) - \pk(x; x*) = 2L, J (* — *")'• 

Hence 

I ?„»(*) i < o»+D>7;*~'v;u < («i+1) V"^%. 
Following [l, §11] still, we find 

I Dkg(x) - faix; x*)\ <c X) {mï)n28^N{m + l)npô*m-ff*+ff% 

As in [ l] ,2*<108^2 /5*; hence 

I Dkg(x) - ^*(»; **) | < c(m!)*i\T(m + l^ lOS» 1 ' ^* /»**-^ . 

Moreover, since rxx*<3d, [l, (6.1)] gives 

| tk(x; x*) | < 3m(m + l)ndmrj. 

Since 8*^4i and f(x)=g(x) in R—B, the theorem follows. 
We turn now to the second theorem. We shall say A satisfies (P) 

locally if for each x£.A there is a neighborhood U oî x and a number 



78 HASSLER WHITNEY [February 

o) such that any two points y and z of AC\ U are joined by an arc in A 
of length not greater than o)rxy. 

THEOREM II. Let A be a closed subset of an open set R in E, satisfying 
(P) locally, and let m be a positive integer. Then for any continuous 
function e(x) defined and greater than 0 in R there is a continuous 
function 8(x) defined and greater than 0 in A with the following property. 
Let f(x) be any function of class Cm in A, such that 

| fk(x) | < ô(x) (x£.A,<Tk^ m). 

Then f(x) may be extended throughout R so that 

| ƒ*(*) | < €(*) (x ER,(Tk^ m). 

REMARKS. The preceding theorem is easily seen to be a consequence 
of this one. The present theorem holds if E is replaced by a differ­
entiate manifold M, in which a fixed set of coordinate systems (each 
one intersecting but a finite number of others) is used to measure the 
size of derivatives. To show this, we imbed M in a Euclidean space 
E' (see [3, Theorem l]), giving AQRQR'CE' (R' open in E'; we 
let R' contain no points of the limit set of M), extend ƒ throughout R' 
(see the proof of [3, Lemma 4]), and consider its values in R. 

To prove the theorem, we begin by choosing spherical regions 
Uu U2, • • • , each UiQR> with the following properties: 

(a) Each Ui is in a neighborhood U as described above. 
(b) Each Ui intersects but a finite number of other 77y. 
(c) If Ui is of radius p», and U{ is the concentric region of radius 

Pi/1, then R=Y,Ul. 
Let \l/*(x) be a function of class Cm in E such that 

Hx) >o (xeui), 
y{x) = o ( « S E - ui). 

Set 
*'(*) =*'(a0/2>'(*) (*GR); 

then 0*(#) is of class Cm in R, and 

*'(*) = 0 (xER- Ui), 

£ **(*) = i (* e R). 

The extension of ƒ(x) is defined as follows. Set 

fix) = o (* e R - Ui). 
Then f is of class O in A\J(R— Ui). Extend it as in [l] (using a fixed 
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subdivision of Ui—A ; we could set ƒ*(#) = 0 in E—R) to be of class 
O in R (or E). (Note that if AC\ Ul = 0, then p (x) = 0, *G-R.) Set 

/(*) = 2>'(*) &ER). 
Then ƒ is an extension of class Cm of its values in A. We must show 
that it satisfies the condition of smallness. 

Choose ai è 1 so that 

| </>l(x) | ^ di (X ER, <Tk Û M), 

then if | /*(*)| <rj (x^AfWl), 

I ƒ*(*) I = 2 3 <t>%i(%)fk-i(x) ^ (w + 1) 1̂7 (a; G A). 

By the choice of Ui, there is an co» such that any x' and x11 in -4H £7» 
are joined by an arc in A of length not greater than a)irX'x". Set 
<r» = max (1, 2/pi). If i?i is the remainder for ƒ*, we shall show that 
for any x1 and x" in ^4U(i?— Ui)y 

i t ' . ... I , 2n m m rn—aj^ 

| Rk\x ; # ) I < 2/z(w + 1) ù)idi(rirX'X"ri. 

If # ' and # " are both in Ui, we apply [2, Lemma 3] . If # 'Gi? — Ui 
and x"ÇzU{, or vice versa, then *v*"s=Pi/2, and the proof in the 
preceding theorem applies; we consider separately the cases pi/2 à l , 
p t /2 < 1, using rX'X" è 1 and o w « " â 1 respectively. If x'ÇzR— Ui and 
* " G . K - C//, or vice versa, i?i = 0, since <t>\{xf) =0l(tf") = 0 . The proof 
of the preceding theorem now shows that for some oti, if 

| / * ( * 0 | <V (x'e.AC\U'i,<rhSni)> 
then i 

I ƒ*(*) | < ait\ (x ER,<TkS m). 

(We may set a{ = 1 if AC\ Ul = 0.) 
Given e(#), we determine h{x) as follows. For each #G-R there is a 

set of numbers Xi, • • • , X«, s=s(x), such that 

x G each f/\y, x G no other {/ƒ. 

Because of (b), s is finite. Set <x(x) =a\j[+ • • *+a\t. 
We can clearly choose a continuous function j3(#) in R such that 

a(a) < P(x) (x G # ) . 

We may now choose a continuous function ô(xf) > 0 in -4 such that 
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for any # '£-4, if C/̂ , • • • , U^ are the Uj containing x', then 

8(*0 £ <x)/p(x) (x G U'n U • • • U < ) . 

Now take any ƒ of class Cm in -4, with |/*>(a0| <S(x) (xÇzA, c ^ m ) ; 
the extension of ƒ through R has been defined. Take any #£ i? ; de­
fine Xi, • • • , Xt as above. Then 

| ƒ*(*') | < ô(*0 £ *(x)/fi(x) (x'EAr\ Ulj, <rk£tn), 

and hence 

| fk (x) | < a\j€(x)/p(x) (<rk g m). 

SinceMx)=M*)+ • • • +Mx)> 

| ƒ»(*) | < a(x)e(x)/p(x) < e(x) 

for Vk^rn, which completes the proof. 
EXAMPLES. (1) Let A consist of a point, together with a sequence 

of points approaching it. Letting ƒ (#) = 1 at a finite number of points 
of the sequence, and f(x) = 0 in the rest of A shows (with m = 1) that 
the theorem fails here. 

(2) Let A be the closed region of the plane defined by (a) x2+y2 :g 1, 
and (b) either «^Oor \y\ ^#8/2. Let f(x, y )=0 if x^0f and set 

_ ( 7*V(1 + y2x2) if x è 0, y > 0, 

We see easily that ƒ is of class C1 in A. (It would not be if, in (b), we 
used \y\ è#2.) The maximum df/dx occurs at # = l/(31/27), and has 
the value 9/(8 -31'2). Set 

p = (\/Vl*yy l/38/478/2)> q = (1/31/*?, - 1/38V /2). 

Then 
/ W - / ( g ) = 27/372 . 2 ^ 3 8 / 4 i/2 

'*« l + 72/372 ' 38 'V / 2 4 7 

Hence, in any extension of ƒ through the plane, we must have 
| df/dy\ è3 8 / V / 2 / 4 at some point (between p and q) ; yet | / | , | df/dx\ 
and |#jf/d;y| are uniformly bounded for all y > 1 . Taking 7 arbitrarily 
large shows that the conclusion of the theorem does not hold. 
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THE SYMMETRIC JOIN OF A COMPLEX 

C. E. CLARK 

1. The definition of J. Let K be a polyhedron. With each pair 
of distinct points p, q of K we associate a closed line segment pq. 
No distinction is made between p and q and the corresponding end 
points of pq. The length of pq is a continuous function of p and q, and 
the length approaches zero if p and q approach a common limit. Dis­
tinct segments do not intersect except at a common end point. The 
points of these segments with their obvious natural topology make 
up / , the symmetric join of K. This space arises in [4 J1 in connection 
with the problem of finding the chords of a manifold that are orthogo­
nal to the manifold. 

2. The subdivision of J. Let the mid-point of pq be denoted by 
ApXq — AqXpt and let p = ApXp. These points ApXq make up the 
symmetric product S of K. Let the mid-point of the segment from p 
to ApXq be denoted by pXq, and let p=pXp. These points pXq 
make up the topological product P = KXK. Consider the closed seg­
ment of pq from pXq to qXp, it being understood that this segment 
is the point p when p = q. All such segments form the "neighborhood" 
Ns* Clearly Ns can be homotopically deformed in Ns along the seg­
ments pq upon S with S remaining pointwise invariant. Finally con­
sider the closed segment of pq from p to pXqt it being understood 
that this segment is the point p when p = q. All such segments form 
the "neighborhood " NK. Clearly NK can be homotopically deformed 
in NK along the segments pq upon K with K remaining pointwise in­
variant. 
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