UNIFORM CONVEXITY. III
MAHLON M. DAY

It is the purpose of this note to fill out certain results given in two
recent papers on uniform convexity of normed vector spaces.! A
normed vector space? B is called uniformly convex with modulus of
convexity 6 if for each €>0 there exists a 8(¢) >0 such that for every
two points b and b’ of B satisfying the conditions ||3| =||¢’|| =1 and
|6—0'|| Z € the quantity ||o+b'|| £2(1—8(e)). If ||bo|=1, B is said
to be locally uniformly convex mear b, if there is a sphere about by
in which the condition for uniform convexity holds. Theorem 1 shows
that all properties of normed vector spaces which are invariant under
isomorphism are the same for uniformly convex and locally uni-
formly convex spaces. Theorem 2 gives a necessary condition for
isomorphism with a uniformly convex space. The condition is in terms
of isomorphisms of finite dimensional subspaces and is suggested by
examples given in [I]; it is not known whether the condition is suffi-
cient. Theorem 3 is somewhat more general than Theorem 3 of [II];
it uses uniformly convex function spaces instead of the I, spaces
of [II].

A cone Cin B is a set which contains all of every half line from the
origin through each point of C.

LeMMA 1. 4 normed vector space B is locally uniformly convex near by
if and only if there exists a convex cone C, with by in its inierior, such
that for every e there is a 8:(¢) >0 such that the conditions ||b] <1,
167l £1, and ||b—0'|| Z € imply ||640'|| £2(1 — 8:(€)) for every pair of
points b and b’ in C.

If this condition is satisfied there is obviously a sphere about b,
inside C, so that in that sphere §(e) can be taken equal to & (e).
On the other hand, if there is a sphere of radius 2%k about b, in
which 0 can be defined, it can be shown that it suffices to let C
be the cone through points of the sphere of radius k& about b, and to
let 8,(e) =inf [¢/10, 8(4¢/5)/2].

LeMMA 2. If the cone C of Lemma 1 contains a sphere about by of
radius k, if ||b]| <1 and if ||b—bd| 2k, then ||b4bd| <2 — di(k).

Presented to the Society, April 24, 1943; received by the editors January 25, 1943.

! These papers are [1] Reflexive Banach spaces not isomorphic to uniformly convex
spaces, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 313-317, and [I1] Some more uni-
formly convex spaces, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 504-507.

2 See Banach, Théorie des opérations linéaires, Warsaw, 1932, for general definitions.
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This is obvious if |6 —b¢|| =F. If ||3]| =1 and |6 —b|| > % there exists
a point by=Nbo+ (1 —N)be, 0 <A <1, on the line segment from b to b
such that ||bo—by| =k while ||b;]| £1; hence ||b1+bd|| =2(1 — 8:(k)). Let
f be a linear functional such that f(b") £|[5’|| for all 5’ in B and such
that the line {5’|f(") =1} in the plane of 0, by and b touches the unit
sphere in B at the point of intersection of that sphere with the
half line from 0 through b+bo, so that f(b+bo) =|/6+bd||. Then
flbo+01) = ||bo+b1]| =2(1—61(k)). Two cases can now be distinguished:
If f(bo) 2£(b), 2—28:(k) Zf(b14-bo) 2 f(b+bo) =||b+bd|. If f(Ba) <f(2),
2(1— 81(k)) Zf(Br+bo) =F(bs) +£(bo) >2f(bo), s0 ||b+bo|| =F(b+bo) =F(bo)
+/(0) <1—d:(k) +1.

THEOREM 1. If B s locally uniformly convex near some point b,
then B is isomorphic to a uniformly convex space. If k is the radius of the
sphere which exists by Lemma 1 about bo, a suitable modulus of con-
vexity for the new space is given in terms of the old by &f (¢)=1

—1/[1+8:(8:(k)e/4) /(k+8:(k) /4)].

Suppose the cone C of Lemma 1 contains a sphere {b|]|6—b4| <k}
about bo; let a=1—6:1(k)/4 and consider the two spheres
Ei={b|||[b—abi| <1} and E,= {b|||p+abdd <1}. If S is the inter-
section of E; and E,, it is clear that S is convex and symmetric about
the origin, and that .S contains the sphere {b](8]| < 8.(%)/4}.

To show ||b|| <&+ 8:(k) /4 for each b in S, it suffices to show that
b&S implies that b+aby is within & of bo. If this is false, that is, if
||6+abo—bd| >k, then, by Lemma 2, ||b+abo+bd| <2— 8:(k). How-
ever ||b+abo+bo|| =] —abo+(14+2a)bo|| = (1+2a)||bo|| —||o —ab|| = 1
+2a—1=2a=2—08.(k)/2>2—0:().

Let |b| be the smallest non-negative value of # for which the point
b/t is in S. Then I - | defines a new norm in B and it is clear
from the inequalities thus far derived that [8.(%)/4]|b] <[]
<[k+8:(k)/4]|b|, so this new norm defines a space isomorphic
to the original and all that need be proved is that I <o | is uniformly
convex. If by, b €S, and |by—bs| >¢ then ||(bi+abo) — (ba+obo)||
=||b1-—b2“ = 61(k)e/4. Also b,~+abo—bo” =k by the preceding para-
graph so, by the original hypotheses near b, ||b1+bz+2abo”
<2[1—8:(5:(k)e/4) |=2(1 —u(e)) ; thatis, (b14-bs) /2= E{ = {b|||6+cb|
<1—u(e)}. The same argument with —ab, and —by shows that
(b14:)/2E€ES = {b||b—abo]| <1—p(e) }.

It will now suffice to show that there is a &/ (¢) >0 such that
|b] <1—28{(e) if bEE! -E{. E! CE;, i=1, 2, so for any b in E{ -E{
there is a number ¢21 such that |#| =1; hence, either |ltb+abo| =1
or ||tb—abo||=1. These cases are interchanged by replacing b by
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—b so it suffices to consider the first; then 1—pu(e)=|labo—10|
= ||abo—tb+1tb—b|| = ||abo—1b]| —||tb—b]| = 1—(—1)||8]|. Therefore
(¢—1)||5]| Zu(e) or ez 1+u(e)/||b]| =1+ 8:(8:1(k)e/4) / [+ 8:(k) /4]. Let-
ting 1— 6/ (¢) be the reciprocal of the last term in the preceding in-
equality gives |b| =1/t51—38/(¢) if bEE{ -EJ.

We turn now to a necessary condition for isomorphism of B with
a uniformly convex space. The effect of uniform convexity on the
finite dimensional subspaces of an isomorphic space was used im-
plicitly in [I]; it is given explicit formulation here. Let B, and B
be two normed vector spaces; then there exist linear operations of
norm =1 defined on B, with values in B. For each such operator
U there is a largest number ky, 0 Sky <1, such that ||8d| Z|| U(%0)||
gkU”bo” for each by in By, and this number ky can be taken as a
measure of the distortion of By under the mapping U into B. De-
fine k(Bo, B) to be the least upper bound of ky as U runs over
the linear operators from B, to B of norm not greater than 1; ex-
plicitly, &(Bo, B)=supjju st infjjse11=1 || U(b0)||. E(Bo, B) is then a
measure of how nearly By approaches isometry with a subspace of B;
if k(Bo, B) =1, there are operations which come arbitrarily near pre-
serving distances; 2(Bo, B) >0 if and only if B, is isomorphic to a
subspace of B. For the present it suffices to choose certain finite di-
mensional spaces for By Let M, and L, be the n-dimensional
spaces of sequences #=(4, : - -, t,) of » real numbers, where
I#lsea =[Gt - - -, t)l| st =maxigign || and [[#l|z.=[lCt, - - - 2)]]2a
=) 1<izn |%]. Then k(M,, B)=k(L,, B)=0 if and only if the dimen-
sion of B is less than #; also k(M ,, B) and k(L,, B) are nonincreasing
functions of » for each B.

LemMA 3. If U is a one-to-one linear operator from By onto Be such
that for some a 20, ||by|| 2|| Uby|| Zal|6y|| for each by in B, then for any
normed vector space T, k(T, By) Zak(T, Bs) Za2k(T, By).

If a =0, this is obvious. If ¢ >0 and Fis any linear operator from T
into B, with ”FH =1, let UF be defined by UF(¢) = U(F(¢)) for every
tin T. Then |UF||=1 and ||UF(¥)|| 24| F(t)|| for every t. Hence
infy =1 || UF®)|| Za infj =1 || FG)|| so k(T, Bs) Zak(T, By). If F’is
any linear operator of norm =1 from T into B,, the same argument,
using the operator ¢ U~'F’, shows that (T, B:) =ak(T, B.).

Note that if U maps B; on only part of B, or is not 1-1 but is of
norm =1, the first half of the proof still holds (although ¢ =0 in the
second case); it follows that if B, is a subspace of By, then k(T, Bi)
ék(Tv B2)'
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Sobczyk?® has defined a special embedding of /; into m which can
easily be modified to define an isometry of L,41 and a subspace of
Mon 50 k(Lyy1, B) Zk(Ms, B) for every integer n. In particular, L,
and M, are isometric so k(Ls, B) =k(M,, B).

LeMMA 4. If 6, satisfies Lemma 1 in the whole unit sphere of B and
is continuous on the left, then

(1) k(M.,, B) £ [1—&(2k(M., B))]*,

(2) k(Lw, B) < [1— 8.2 (Len, B))]".

If Fis an operation from M, into B such that ||¢]| 2| F(#)|| 2%l ¢|

for all ¢, where £>0, let ¢,=41 for ¢=1, - - -, n; then the points
F(ei, - - -, €,) lie in the unit sphere of B since HF(el, cee, en)H
é”el, cee, e,.[|=1. If ¢, -+, € and ¢, - - -, € are different,
”F(elr ) en)_F(€{9 ] €,{)|gk”(€1, ] e'n)_(el’r N} en)”
=2k; hence ”F(el, c e, €, 0)| =||F(e1, s, €y, )= Fle, - - -,
€1, —1)||/2=1—8:(2k); that is, ||F(e, - - -, €, 0)/[1—8:(2k) ]|
=1 for all €&, - -+ -, €1 These points are at least 2k apart for
different e;, so this process can be applied #»—1 times to show that
|F(1,0,0,---,0)/[1—8(2k) ] =1. Hence k=£[[1,0,0, - - -, 0|
=||F@, 0, 0, - - -, 0)]| = [1—6.(2k) ]»*. Taking k=k(M,, B) or, if

that is impossible, taking the limit as k increases toward k(M,, B)
gives (1).

If F maps Ly into B so that ||¢|| =|| F(#)|| 2#| ¢, #>0, for all ¢,
the same sort of argument can be carried through using the points
of Ly» which have one coordinate equal to one, the others all zero. It
leads to the inequality k=k||(2~, - - -, 27| <||F@-», - - -, 27|
=< [1—6:(2%) ]* which gives (2).

THEOREM 2. If B is isomorphic to a space which is locally uniformly
convex near any point, then lim, k(M,, B) =lim, k(L., B) =0.

By Theorem 1, B is isomorphic to a uniformly convex space B’. By
Lemma 4, k(Ly, B’) <[1—8,(2k(Ls, B"))]" for all n. If k(Ly, B’)
>k>0 for all #, then 0<k=k(Ly, B')<(1—06(2k))"—0 as n—x;
this contradiction and the monotony of £(L., B’) show that k(L,, B’)
—0. Lemma 3 shows that k(L,, B)—0 also. A similar proof holds
for k(M,, B); this can also be proved by using the remark before
Lemma 4 and the fact that %(L,, B)—0.

This theorem has as a corollary the result of [I]: If B=P?(B,),
where B;=17i or L?i, and if the numbers p; are not bounded away from

3 A. Sobcezyk, Projection of the space m on its subspace co, Bull. Amer. Math. Soc,
vol. 47 (1941) pp. 938-947; the construction is given in the proof of Theorem 3.
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1 and «, then B is not isomorphic to a uniformly convex space.

It is not difficult to give a direct proof of Theorem 2 not using
Theorem 1. I have also shown that if B* is uniformly convex, then
k(L., B)—0 (as does k(M,, B)); whether this condition is sufficient
as well as necessary for isomorphism of B or B* with a uniformly
convex space is a question which I am, so far, unable to answer.

Some remarks may be made about the minimum values, 2(L,) and
k(M,), of k(L., B) and k(M,, B) taken for # fixed and B varying over
the spaces of dimension at least n. k(M,, I?)=n"1? if 2=5p < » and
E(L,, I1?)=n~Y?" if 1=5p=<2 where 1/p’+1/p=1. Hence k(L,)
Sk(L,, 1¥)=n"Y2 and k(M,)<k(M,., 1*)=n"Y2 for all n. The
plane with a regular hexagon for unit sphere is an example showing
that k(Ls) =k(M:) <2/3 (<21/?), A tedious computation has shown
that 2/3 is precise; that is, that k(L) =k(M;)=2/3. So far all my
attempts to show k(L,) and k(M,) =1/n have failed for n>2.

The rest of this paper is devoted to extending the results of [II].
A normed vector space T of real-valued functions ¢= {t,} on some
set of indices S will be called a proper function space if for every
function ¢= {¢,} in T with 0=<¢, for all s (a) for every real-valued
function {t,,’ with 0=t/ <¢, for all s, the function {t,,’ } &T and
(b) 0= {# }|| =]l {s}]] If Tis a proper function space and B,, sES,
are normed vector spaces, let Pr{B,} be the space of functions
b= {b,} where b,€B, and the function {||b,||}ET; in Pr{B.},
1Bl =]l {8s }l| =]l {l|2s]| }]|- (In [I1] S was countable and only the spe-
cial product spaces P? B,} =Pp {Ba} were used.)

THEOREM 3. If T is a proper function space, then Pr{B,} is uni-
Sformly convex if and only if T is uniformly convex and the spaces B,
have a common modulus of convexity.

As the proof follows the lines of the proof of Theorem 3 of [II]
except at one point it suffices to give the first half of the sufficiency
proof ; that is, the special case in which ||b|| =||p’|| =1, ||b—»'|| 2 € and
[165]| =]124 || for every s. Let B,=||b.|| and . =|6s—5/||; then for each
s, ||6s407 || =2(1—6(v./B.))B. where 8 is a common modulus of con-
vexity for all B,. Hence

@ e+ 2 = [l{lle + 8}l = 2l {1 — sCve/B8} -

Clearly v,=<28, for all s; let E be the set of all s for which v,/8s
>¢€/4; then in F, the complement of E, 8, =4v./¢. If {t,} is any ele-
ment of T, let t,g=t, if SEE, t,z=0 if s E; then

12 [[{8}llr 2 [[{8r}l] 2 [[{47er/e}ll = /el {rer}l-
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Hence || {v.r}|| Se/4 and

Hveedll = ({7} = {verdll 2 [l = [H{rerl] 2 3¢/4.

Hence || {Buz}|| 2]l {v.z} /22 3¢/8.

Now let t= ﬁsp}, t'= {Bszz} and ¢''=(1-26(e/4))t"; then
[¢+2¢"|| <l|lt+#]| =1 and [[e+¢ = (¢+¢)]| =||¢' — ]| =25(e/8) || ¢/
=36(e/4)e/4. Call this last quantity a(e); then

@) (A =8/t +4 =@/t + ¢+t 4 ¢ S 1 - 8i(ale)
where &, is the function which exists in T by Lemma 1. By (1) and (2)

164 || < [[{(1 = 8(vo/BNBux} + {Bor}l| = ||(1 — 8(e/a)) ¢ + ¢
=1 —6i(ae) =1 — d2(e).

The remainder of the proof is exactly that given in [II] (beginning
with line 4 on p. 506); it shows that a suitable value of & in Pr{B,}
is given if 8;(e) = 8:(n) where 7 is so chosen that /24 81(n) < 82(¢).
Since §3 depends only on the moduli of convexity in T and all B,,
we have the following result, more general than Corollary 1 of [IT].

COROLLARY. If {T} is a collection of proper function spaces, if {B}
is a collection of normed vector spaces, and if all these spaces have a
common modulus of convexity, then all the spaces Pr {Bs} with T in { T}
and all B, in {B} have a common modulus of convexity.

Some extensions of Theorem 3 may be made; for instance, it is
clear that the condition (a) on a proper function space is imposed to
make sure that such functions as {||6,+5/]|} are in T. For example,
if S is a space in which a measure is defined and all B, are the same
space B,, it suffices to take T'=L%, 1<p< » and to consider only
Bochner measurable functionst {6,} for which {||6.]|} €T. In this
case all the functions constructed are again in T so the proof can be
carried through showing directly that L?(B,) is uniformly convex if
1<p < » and By is uniformly convex. In fact, if the norm in T satis-
fies (b) and if it is assumed only that every measurable real-valued
function dominated by a function in T is again in T, the proof can be
carried through for the space of Bochner measurable functions from S
into B for which {||5.]|} €T.
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4 S. Bochner, Integration von Funkitonen, deren Werte die Elemente eines Vektor-
raumes sind, Fund. Math. vol. 20 (1933) pp. 262-276.
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