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THEOREM II. Let &P i+ • • • +C8P8 be identically zero, where the 
Pi are distinct power products each of degree d>0 in a nonzero F and 
its derivatives. Then each d is in the perfect ideal generated by F. 
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ON THE NON-EXISTENCE OF ODD PERFECT NUMBERS OF 
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One of the oldest unsolved mathematical problems is the following 
one: Are there odd perfect numbers?2 If such a number n exists, it 
must have the form 

a 2/3! 2/32 20« 

n = p qi Ç2 - • • qt 

where p, qi, qi, • • • , qt are primes and p=a=l (mod 4). This has 
been proved by Euler.3 Sylvester4 obtained estimates for /, in particu­
lar /2^4, and t^7 if n^O (mod 3). Recently, it was shown by 
R. Steuerwald5 that the case j8i=/32= • • • =|8< = 1 is impossible, and 
by H. J. Kanold6 that the same is true for ft =/?2 = • • • =/8* = 2. More­
over Kanold proved that n is not perfect if the greatest common 
divisor d of 2j8x+l,2ft+l, . . . , 2&+1 is divisible by 9, 15, 21, or 33, 
and some similar results. All these results deal with the case d>l. 

In the following, it will be proved that no odd perfect number n of 
form paq%($ • • • <Z?-i<zt exists. Here we have d = l. For the proof I use 

Presented to the Society, April 24, 1943; received by the editors March 1, 1943. 
1 The relation of the results of this paper to another paper by H. J. Kanold, 

VerschHrfung einer notwendigen Bedingung filr die Existenz einer ungeraden voll-
kommenen Zahl, J. Reine Angew. Math. vol. 184 (1942) pp. 116-124, will be consid­
ered in an addendum to be published in the December Bulletin. 

2 For the history of the problem see Dickson, History of the theory of numbers, 
vol. 1, 1919, pp. 1-33. 

8 Commentationes arithmeticae collectae, vol. 2, Tractatus de numerorum doctrina 
1849, p. 514; Opera postuma, vol. 1, 1862, pp. 14-15. 

4 Sur r impossibilité de l'existence d'un nombre parfait impair qui ne contient pas 
au moins 5 diviseurs premiers distincts, C. R. Acad. Sci. Paris vol. 106 (1888) pp. 
522-526; Collected mathematical papers, vol. 4, 1912, pp. 611-614. Sur une classe spé­
ciale des diviseurs de la somme d'une série géométrique, C. R. Acad. Sci. Paris vol. 106 
(1888) pp. 446-450; Collected mathematical papers, vol. 4, 1912, pp. 607-610. 

6 Verschârfung einer notwendigen Bedingung filr die Existenz einer ungeraden volU 
kommenen Zahl, Sitzungsberichte der mathematisch-naturwissenschaftlichen Abtei-
lung der Bayerischen Akademie der Wissenschaften z\x Mtinchen, 1937, pp. 68-72. 

6 Untersuchungen über ungerade vollkommene Zahlen, J. Reine Angew. Math. vol. 
183 (1941) pp. 98-109. 
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theorems of T. Nagell on Diophantine equations. With the same 
method similar results may be obtained. 

LEMMA 1. Let qbe a positive prime. The Diophantine equation 

q2 + q + 1 = ym 

has no solution for m>\. 

PROOF. T. Nagell7 has proved the following theorem: If m>\is not 
a power of 3, then the Diophantine equation x2+x+l =ym has no solu­
tions in integers x, y with y?£ ± 1. In order to obtain all the solutions 
of 

(1) x2 + x + 1 = y\ 

it is sufficient to solve the cubic Diophantine equation 

(2) a3 - Sab2 + bz = 1 

and to set 

(3) x = a* - 3a2b + bz - 1 and x = - az + 3a2b - ô3. 

I t follows from the Theorem of Thue-Siegel that (2) has only a 
finite number of solutions. Nagell gives the solutions 

(4) Ö = 1 , 6 = 0 ; a = 0, 6 = 1; a = J = - l ; a = 2 , 6 = - l ; a = l , ft«3. 

But it is unknown whether there are other solutions in integers a, b. 
Since the discriminant of (2) is positive, we can not apply the general 
theorems of Delaunay and Nagell for cubic Diophantine equations. 
I t follows from (3) and (4) that (1) has at least the following solutions: 
tf = 0, 3> = l ; x= — 1, ;y = l ; # = 18, y = 7) x= —19, y = 7. 

By Nagell's theorem we have only to consider the case m = 3k for 
the proof of our lemma. But we do not need the complete solution of 
(1) ; it is sufficient to prove that this equation has no solution where 
x = q is a positive prime. 

For q = 3 we have g 2 + g + l = 13. This is no cube. If # = 1 (mod 3), 
then 

(5) q2 + q + 1 BE 0 (mod 3), 

but 

(6) q2 + q + 1 BE 0 (mod 32) 

7 Des équations indéterminées x2-\-x-\-l—yn et #2-f-#+l =*3;yw, Norsk Matematisk 
Forenings, Skrifter (1) no. 2 (1921). Cf. Uanalyse indéterminée de degré supérieure, 
Mémorial des Sciences Mathématiques, vol. 39 (1929), p. 58. 
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since it is well known that the prime divisors of the pth cyclotomic 
polynomial fp(pc), where p is a prime, are the primes of form ph+1 
and p itself; but fp(x) is not divisible by p2 for any integer x. I t follows 
from (5) and (6) that q2+q+l is not a cube for q = l (mod 3). 

Now, let q be a prime of form 3h+2. Since y2+y + l <yz for y*z 2, 
it follows from q2+q+l=yz that q>y. Moreover we have q(q+l) 
= (y — l)(y2+y + l). Since q is a prime and greater than y, it follows 
that 3; — 1 is relatively prime to q. Hence q is a divisor of y2+y+l. 
This gives a contradiction because y2+y+l has no prime divisor of 
form 3h + 2. 

LEMMA 2. Let r and s be different positive integers and p be a prime. 
The system of simultaneous Diophantine equations x2-\-x-\-l=3pr, 
y2+y-\-l = 3psy has no solutions in positive integers x, y. 

PROOF. Nagell8 has proved that the Diophantine equation x2+x +1 
= 3zk (k>2) has no solution with 2 > 1 . Hence we have only to con­
sider the case r = 1, s = 2. Then we have 

(7) x2 + x + 1 = 3p, y2 + y + 1 = 3p2. 

If these equations have a solution in positive integers, then it follows 
from (7) that 

(8) 0 < x < p < y < 2p 

and, on the other hand, that 

(2x + l )2 s - 3 = (2y + l )2 (mod p), 

2x+ 1 = ± (2y+ 1) (modjO 

since p is a prime, hence either 

(9) x = y (mod p) 

or 

(10) x s - y - 1 (mod £). 

In the first case, it follows from (8) and (9) that 

(11) y = p + x 

and in the second case, from (8) and (10) that 

(12) y = 2p - x - 1. 

On the other hand, it follows from (7) that p^3 and that x=y^l 

Loc. cit. 
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(mod 3). This contradicts (11) and (12). 
Now we are able to prove our theorem. 

THEOREM. An odd number of form n = paqlql • • • q*-iqf is not perfect. 

PROOF. We change the notation and write n in the following form 

a 2 2 2 2 2 2 4 

n = p qiq2 • • • qufiU • • • r%s (k è 0, l è 0) 

where the primes qK are congruent to 1 (mod 3) and where the primes 
r\ are incongruent to 1 (mod 3). Let us assume that n is perfect, then 
we have 

a 2 2 2 2 2 2 4 

In = <r(n) = ar(p )(r(qi)<r(q$) • • • (r(0*M'iM'O • • • <r(ri)<r(s ), 

where a-(w) denotes the sum of the divisors of w. I t follows that 
« 2 2 2 2 2 2 4 

In = 2p qiq2 • • • qkrir2 - • - fis 

= * ( / ) ] ! (1 + ?« + ?«) I I {(1 + fX +rl)} (1 + * + s*+ s + / ) . 

Each factor l + g « + ^ is divisible by 3, but not by 9; each factor 
1+fx+fx is not divisible by 3. All the other prime divisors of 

h 2 l 2 

n a + ̂  + ̂ n a + 'x + rx) 
K=l \ = 1 

have the form 3A+1. We have now to distinguish between some cases. 
I. n^O (mod 3). Here we have k=0. Since n is not divisible by 3, 

it follows from Sylvester's theorem mentioned above that n must con­
tain at least 8 different primes; hence 1^6. Moreover we obtain from 
(13) t h a t I J i „ 1 ( l + r \ + ^ ) is a divisor of pas*. It may happen that one 
of the / factors of this product equals p, but each of the / — 1 remaining 
factors cannot be a power of p by Lemma 1. Hence each of these / —1 
factors must be divisible by s, and their product must be divisible 
by s5. This gives a contradiction. 

II . n = 0 (mod 3), n^âO (mod 27). Here k^2. One of the primes n, 
say ri, equals 3 since p = 3 is not possible. It follows that n is divisible 
exactly by 32, and hence by cr(32) = 13, because of (13). Therefore we 
have either 13=£ , 13=#i, or 13 = s . 

Ha. £ = 13. Since a + 1 is even, <r(pa) = (£«+1 — l)/(p — 1) is divis­
ible by p +1. Hence n must be divisible by 7, and it follows that either 
one of the primes qK, say qi = 7, or s = 7. 
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I laa . <?i = 7. n must be divisible by a((fi) =57, therefore by 19, and 
we have either q% —19 or s = 19. 

I lacd. #2 = 19. n is divisible by <r(qt)=381t hence by 127. Since 
127 = 1 (mod 3) and k^2, we have 127 = 5. Thus 

« 2 2 2 4 2 2 2 

» = 13 -3 -7 -19 -127 r2r3 • • • rh 

___ <r(») __ <r(13")-13-57-381-<r(127Vfrî) ' • * *(A) 

" " i n " 2 -13«-9-49-361-127 4 - r 2 • • • r2 

(14) 2 « 

= { (1/14) 'a(13a)} (7(127V(r2) • • • <r(n) 

13«-i.7.19.1278-r2 • • • r2 

2 « 

Since the prime divisors of cr(1274) have the form 5A + 1, they are 
different from 7, 13, 19, and 127. It follows now from (14) that they 
are of form 3A+2, hence of form 15A+11. Since 

<r(1274) = 1 + 7 + 4 + 1 3 + 1 = 11 (mod 15), 

the number of prime divisors of cr(1274) must be odd if n should be 
perfect. 

Let us first assume that cr(1274) is a prime. Then we have <r(1274) 

<r(rl) = 1 + rx + rl = 1 + 1 + 127 + 1272 + 1273 + 1274 

( 1 5 ) 2 3 4 0 

+ (1 + 127 + 127 + 127 + 127) . 

Setting a($) =A it follows from (14) that A can have only the prime 
divisors 7, 13, 19, and 127. But, by (15), 

A fâ 0 (mod 7), A ?â 0 (mod 19), A jk 0 (mod 127). 

Since -4>13 , it follows that A is a power of 13. This contradicts 
Lemma 1. 

Let us assume now that <r(1274) is composite. Since the number of 
its prime divisors would be odd, there would be at least 3 factors r\, 
and at least one of them, say r2, must be less than {o-(1274) }1/3. But 

{viffl4)}1'* < {l273(127 + 1 + .01)J1/3 < 641, 

therefore r2 would be one of the following primes of form 15A+11: 
11, 41, 71, 101, 131, 191, 251, 281, 311, 401, 431, 461, 491, 521. Since 
efâ)?*?, 13, 19, 127, it must be divisible by at least two of these 
primes, by Lemma 1. But f(x) = l + x + # 2 = 0 (mod 7) for x = 2f 4.; 
j f (*)e0 (mod 13) for * = 3, 9; / ( x ) = 0 (mod 19) for * s 7 , 11. Hence 
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it is easy to see that <T{T\) is relatively prime to 7 • 13 • 19 for 2̂ = 41, 71, 
101, 131, 251, 281, 461, 491, 521. For /-2 = 401 and 431 we have 
((r(^), 13• 19) = 1 and a(rf)^0 (mod 127). For the remaining primes 
11 and 191 we have cr(1274)^0 (mod 11) and (r(1274)^0 (mod 191). 
This is impossible since r2 was a divisor of <r(1274). 

IIaa2. 5 = 19. Since cr(194) is divisible by 151, we have #2 = 151, and 
since <r(1512) =22953 = 3-7-1093, we have #3 = 1093. This contradicts 
k£2. 

IlajS. 5 = 7. Since cr(74)=2801 is a prime and since cr(28012) 
= 37-43-4933, it follows that #i = 37, #2 = 43, #3 = 4933. This is im­
possible. 

l i b . ö i=13. Since o-(#f)=3-61, we have either £, q2 or 5 = 61. 
I lba . £ = 61. Here n is divisible by ( £ + l ) / 2 , hence either 

#2 = 31 or 5 = 31. 
I lbcd. #2 = 31. Since <r(q%) =3-331 and & = 2, we have 5 = 331. 

Therefore n is divisible by (r(3314), hence by 5, and n has the form 

(16) n = 61«-32-132-312-52-3314-M2. 

Since (r(pa)/p(x^{pa+p0i-1)/pa=(p + l)/pt it follows from (16) that 

<r{n)/2n> (62-13-183-993-31)/(2-61-9-132-312-25) = 331/325 > 1. 

This is impossible. 
IIb<x2. 5 = 31. <r(314)=0 (mod 11) and (T(112) = 7-19. Hence #2 = 7 

and #3 = 19. This contradicts k^2. 
IIb/3. #2 = 61. Since <r(612) =3-13-97, we have either £ = 97 or 

5 = 97. If £ = 97, then n is divisible by (£ + l ) /2 = 72, therefore 5 = 7 
since #i = 13, #2 = 61, and & = 2. But it was proved in IIa/3 that 5 = 7 
is impossible. For 5 = 97 the proof is the same as in IIba2 since 
97 = 31 (mod 11). 

I lby. 5 = 61. 0-(614) is divisible by 5 and by 131. Therefore r2 = 131, 
and either £ = 5 or rs = 5. If £ = 5, then cr(£a) contains the factor 
£ + 1 = 6. Thus a(n) can contain only one other factor 3, hence & = 1. 
Since Ö * ( 1 3 1 2 ) ^ 0 (mod 13) and cr(1312)^0 (mod 61), it is necessary 
that or(1312) and n contain another prime factor of form 3h+l. This 
is impossible. If r3 = 5, then n is divisible by <r(52) = 3 1 , hence #2 = 31, 
#3 = 331. This contradicts k = 2. 

He. 5 = 13. Since cr(134) = 30941 is a prime, we have either £ = 30941 
or r2 = 30941. But £ = 30941 is impossible because n must be divisible 
by ( £ + l ) / 2 and 3 0 9 4 1 = - 1 (mod 27). Hence n = 0 (mod 27); this 
contradicts k ^ 2 . Therefore r2 = 30941, and n is divisible by (r(309412). 

Let us first assume that <r(309412) is a prime, then o-(309412) =#i 
since <r(309412) = 3 (mod 4). Now o"(#?)=0 (mod 151), therefore 
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£2 = 151, and n is divisible by o-(1512), hence by 7. This contradicts 
£ = 2 . 

Let us now assume that o-(309412) is composite. I t is easy to see 
that all the prime factors of <r(309412) are greater than 151. Since 
these prime factors are congruent to 1 (mod 3), it follows that either 
gi>150 and #2>150, or gi>150 and £>150 . 

In the first case we have k = 2 and hence p^2 (mod 3), therefore 
p^zl (mod 12). Since (p+l)/2 is a divisor of n and since 19 cannot 
be a divisor of n, the case p = 37 is impossible. I t follows that p>60. 

In the latter case we have q2>60 if k = 2, because otherwise cr{<£2) 
is divisible by one of the primes 19, 127, 331, 7, or 631; this is im­
possible since these primes are not divisors of <r(309412). Hence, if 
k = 2y two of the primes gi, g2, p are greater than 150 and the third is 
greater than 60. The product 

K = l X = l 

must be a divisor of 9paqlqlse. Each factor cr(q2
K) is divisible by 3. But 

only one of them may have the form 3p* by Lemma 2. Therefore a t 
least one of the 8 prime factors of g ^ s 4 is a d iv isor of (r(q2i)<r(q%) ; 
hence only 7 of these factors may be divisors of the product 
<r(ii)<r(rl) • • • <J(Y\). I t may happen that one of these / factors equals p; 
each of the others is not a power of p, by Lemma 1, and contains, 
therefore, at least one of the remaining 7 prime factors of qlqts4. I t 
follows that Z = 8. 

We have ri = 3; r2 = 30941. The primes r\ are different from 5, 11, 
23, 47, 53, 83, since g i>60 and g2>60. Therefore r3 = 17, 4̂ = 29, 
n = 41, r6 = 59, 7-7 = 71, 7-8 = 89 and 

er(») <r(1512)-151 -61-13-30941 -cr(172)-(r(292) -41 -59» 71 -89-30941 

In 2-1512-150-60-9-134-172-292-40-58-70-88-30940 

This is not possible. For & = 1, it follows similarly that / ^ 7 , and the 
proof is the same. 

I I I . s = 3. Here we have &^4. Since n must be divisible by 
CT(34) = 121, it follows successively that n is divisible by 7, 19, 127, 
5419, and 31. These five primes are congruent to 1 (mod 3) and 
congruent to 3 (mod 4). Hence k^5; this is impossible. Herewith 
our theorem is proved for each case. 
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