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ALGEBRA AND THEORY OF NUMBERS 

199. A. A. Albert: Quasigroups. I. 

Associate with every quasigroup ® the group ®T of nonsingular transformations 
on ® generated by the multiplications of ®, and say that a multiplicative system ©' 
is isotopic to ($ if there exist nonsingular mappings A, B, C on ® to ©' such that 
xA • yB = (x - y) C for every x and y of ®. Every quasigroup is isotopic to a loop (that 
is, a quasigroup with a two-sided identity element e). The normal divisors of a loop ® 
are then shown to be the subsets eW defined for normal divisors W of ®T> ® is simple 
if and only if the only intransitive normal divisor of ®r is the identity group. All 
loops isotopic to simple loops are simple. A system ® is homotopic to ®' if xA-yB 
= (x - y)C îor equivalent mappings A, B, C on ® to ®' which may be singular. Then a 
loop © is homotopic to a loop ©' if and only if ® is homomorphic to an isotope of ®'. 
(Received June 7, 1943.) 

200. William H. Durfee: Congruence of quadratic forms over 
valuation rings. 

Let R be a complete valuation ring whose associated residue-class field has char­
acteristic not two. An equivalent diagonal form for an arbitrary quadratic form over 
R is obtained, and it is shown that two such nonsingular diagonal forms are equiva­
lent if and only if their corresponding subfornts composed of those terms having the 
same value are equivalent. Using this the author proves for forms over R a theorem 
stated by Witt for fields and extended by Jones to the £-adic integers, namely, if 
ƒ, g, and h are nonsingular quadratic forms such that g and k each has no variables in 
common with ƒ, then f-\-g and f-\rh are equivalent if and only if g and h are equiva­
lent. (Received August 2, 1943.) 

201. H. L. Lee: The sum of the kth power of polynomials of degree 
m in a Galois field. Preliminary report. 

Let M~CQXm+Cixm~lJr • • • -\-cm-ix+cm be a polynomial in the Galois field 
GF(pn). If Co**lt M is called primary and if C0T^0, write deg M—m. Let Sh

m and Rk
m 

denote respectively the sum of the &th power of polynomials M of degree m, and 
of all M of degree less than m. By the use of two functions ^m(t) — Fm, \pm(t)} which 
vanish when M is primary and of degree m in one case and when deg M<m in the 
other, the sum may be made to depend on an exponent less than k. Then 5^ and Rh
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depend on the remainder in the division of tk by ypm(t) — Fm and \f/m(t) respectively. 
(Cf. H. L. Lee, Duke Math. J. vol. 9 (1943) pp. 277-292.) (Received July 19, 1943.) 

202. W. V. Parker: Limits to the characteristic roots o f a matrix. 
Let A = (an) be a square matrix of order n with elements in the field of complex 

numbers; and define «S*—2]Lilötfl » ̂ V^Sj-il0^"!» ^< — 2|a«| —5»-, and F,-=»21 a,-,-1 
— Tj. Let S, T be the greatest of the Si, Tj, respectively; and let U, V be the least of 
the Ui, Vj, respectively. It is shown that the absolute value of each characteristic 
root of A is not less than the greater of the numbers U and V and is not greater than 
the smaller of the numbers 5 and T. Similar bounds are also found for the real and 
imaginary parts of the characteristic roots. (Received July 23, 1943.) 

203. H. E. Salzer: Table of first two hundred squares expressed as a 
sum of f our tetrahedral numbers. 

The following empirical theorem is conjectured : Every square integer is expressi­
ble as the sum of four positive (including zero) tetrahedral numbers (n3—n)/6. It has 
been verified by a table prepared for the first 200 squares. This empirical theorem is a 
partial improvement of the statement that five non-negative tetrahedrals suffice for 
any integer. (See F. Pollock, Proc. Roy. Soc. London Ser. A. vol. 5 (1850).) (Re­
ceived June 4, 1943.) 

ANALYSIS 

204. R. H. Cameron and W. T. Martin: Transformations of 
Wiener integrals under translations. 

Let F[y] be a functional defined and Wiener summable over the space C consisting 
of all functions x(t) continuous in O ^ / ^ l and vanishing at /=0. In addition, let F 
be continuous and let it be bounded over every bounded set x(-) of C. (F is called 
continuous if J?[yn>]-».F[yo>] whenever ƒ»>(*)—>y<°>(J) uniformly in O^jt^l, and 
F is bounded over every bounded set x(-) of C if for every positive constant B 
there exists a constant K=*KB such that |.F[:y]| ÛK for all y(') of C for which 
\y(t)| ^Bf O^ /^ l . ) Under these conditions on the functional F the authors obtain 
a transformation formula for Wiener integrals under translations of the form 
yW^^W+^oÖ) where x0(t) is a given function of C with a first derivative x'0(t) of 
bounded variation in 0 ̂ tS 1. The transformation formula is f%F\y\dwy = /^"^[x+^o] 
exp { — f0[x'0(t)]

2dt — 2fQxQ{t)dx(t))dwx. The formula forms a basis for the calculation 
of various types of Wiener integrals. (Received July 30, 1943.) 

205. M. M. Day: Uniform convexity. IV* 
In this paper relationships between uniform convexity, factor spaces, and con­

jugate spaces are discussed. Theorem 1 : A normed vector space B is uniformly convex 
if and only if all the two dimensional factor spaces of B are uniformly convex with a 
common modulus of convexity. The concept of uniform flattening is suggested by a 
description of a "sharp edge" on the unit sphere in terms of the norm of the space. 
It is shown [Theorem 2] that this is dual to uniform convexity; that is, J5[B*] is uni­
formly flattened if and only if 5*[J3] is uniformly convex. It follows that a complete 
uniformly flattened B is reflexive. The proof of Theorem 2 uses a computation for 


