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1. Introduction and definitions. Let G be a compact abelian group 
and a a continuous automorphism of G. We write G multiplicatively 
and use, accordingly, the exponent notation for automorphisms. 
Thus the image under a of the element x £ G will be denoted by xa; 
similarly we shall write for (complex valued) functions f(x), fa(x) 

If m is Haar measure2 in G (normalized so that m(G) = 1) we con­
sider the set function m'{E) = m{Ea). (Ea is the set of all xa, # £ £ . ) 
Since mf is a measure on G possessing all defining properties of m it 
follows from the uniqueness of Haar measure3 that ?n'(E) =m(E) for 
every measurable set E. In other words a is a measure preserving 
transformation of G; the purpose of this note is to investigate a few 
simple properties of a from the point of view of measure theory. 

We shall make use of the Pontrjagin duality theory,4 and, in par­
ticular, we shall need the fact that the group of automorphisms of G 
is essentially the same as that of the character group G*. More pre­
cisely: if to any </>=</>(#) £ G * we make correspond <£a = $a(#) =4>(xa), 
then 0 aGG*, and the correspondence <£—»<£a is an automorphism of G*. 
The duality theory also enables us to reverse this argument: every 
automorphism of G* is induced in this way by a continuous automor­
phism of G. 

We recall some standard definitions from ergodic theory. A measure 
preserving transformation a (not necessarily an automorphism) is 
ergodic if the only (complex valued, measurable) solutions ƒ of the 
equation fa =ƒ are constant almost everywhere. The transformation a 
is mixing if the only (complex valued, measurable) solutions ƒ of the 
equation fa = X/, for any constant X, are constant almost everywhere.5 

(It is true, though irrelevant, that for XT^I even a constant fails to 
be a solution unless it is zero.) I t is well known that the mapping 
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1 This notation dovetails, as usual, with ordinary exponentiation in G; thus 
x^2^ (x*)a2=(xa2Y, and so on. 

2 For a general discussion of measure theory in topological groups see A. Weil, 
L'intégration dans les groupes topologiques et ses applications, Paris, 1938. 

3 Weil, op. cit., pp. 36-38. 
4 Weil, op. cit., chap. 6. 
5 See E. Hopf, Er godentheorie, Berlin, 1937, chap. 3, for a discussion of the fact 

that these definitions are equivalent to the ones more commonly given. 
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ƒ—>fa induced by a measure preserving transformation a on the space 
of functions over G is a unitary transformation of the Hubert space 
L2(G).e Two measure preserving transformations a and /3 are of the 
same spectral type if there is a unitary transformation co of L2{G) 
(co need not be induced by a transformation of G) for which/w a w~1=/ / ? 

for all /£Z,2(G). Given any point 1 6 G (or function ƒ on G) the set of 
all xaH (or ƒ""), n = 0, ± 1 , ± 2 , • • • is the orbit of x (o r / ) . If a is an 
automorphism the orbit of the identity consists of the identity only; 
if this is the only finite orbit we shall say, for the sake of brevity, 
that a has no finite orbits. 

In terms of the definitions of the preceding paragraph we can state 
our results quite concisely. In Theorem 1 we obtain a simple charac­
terization of ergodicity and mixing in terms of the orbits of a in G*. 
Theorem 2 is a statement concerning abstract groups and, prima facie, 
has nothing to do with measure theory; together with Theorem 1 
and the duality theory it yields, however, a complete description of 
the spectral type of ergodic automorphisms. In the concluding section 
we state some unsolved problems and emphasize the importance of 
group automorphisms as a source of many new and simple ex­
amples of transformations with properties that were once considered 
difficult to obtain.7 

2. Ergodic and mixing automorphisms. We prove the following 
theorem : 

THEOREM 1. A continuous automorphism a of a compact abelian 
group G is ergodic {or mixing) if and only if the induced automorphism 
on the character group G* has no finite orbits. 

We call attention to the somewhat surprising fact that for continu­
ous automorphisms ergodicity is equivalent to the apparently stronger 
mixing condition. We shall see later that much more than this is true: 
if a is ergodic then it automatically has the strongest of the whole 
known hierarchy of mixing properties. 

The similarity of our definitions of ergodicity and mixing to each 
other enables us to prove both parts of the theorem simultaneously. 
Suppose t ha t /EZ 2 (G) and X, |X| = 1 , are such that fa = \f.8 We may 
expand/in a Fourier series in the characters </>£G*, ƒ (#) =]>^a($)<K#)-9 

Concerning this series we must make two comments. First, even if G* 
6 Hopf, op. cit., p. 9. 
7 Hopf, op. cit., p. 42. 
8 The fact that , considered as a transformation of L2, a is a unitary operator im­

plies that if there is any proper value X at all then it must be of modulus one. 
9 Weil, op. cit., p. 76. 
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is uncountable, at most a countable number of <j>'s fail to be orthogo­
nal t o / , so that at most a countable number of a's are different from 
zero. Second, the series need converge only in the sense of Li (mean 
square convergence) ; the known fact that a sub-sequence of its partial 
sums converges almost everywhere is sufficient to justify the simple 
formal steps that follow. Replacing x by x a we obtain 

£ XafoWa?) = \f(x) = ƒ«(*) = ƒ(*«) 

<t> <t> 0 

Hence (using the orthogonality of the characters) we may equate co­
efficients and obtain Xa(0) =a(0 a~1) , or |a(</>)| = la^"""1) | . Since <j> 
is arbitrary it follows that all coefficients a(<f>) corresponding to 0's 
in the same orbit are equal in modulus. Since ]C*laW0 | 2 < °° it fol­
lows that all a's corresponding to 4>'s in the same infinite orbit vanish. 
This settles the only if part of our theorem : a non-constant ƒ can exist 
only if a (considered as an automorphism of G*) has finite orbits. 

The converse is easier. Let 0 £ G * (#5^1) have a finite orbit; sup­
pose, for definiteness, that n is the least positive integer for which 
<t>an = (j>. I t follows that for the function / = 0 + 0 a + • • • +(/>aV"1 we 
have fa—f. The orthogonality and, a fortiori, linear independence of 
the <j>'s show that ƒ is not constant. Since this shows that the exist­
ence of a finite orbit implies non-ergodicity, the proof of Theorem 1 is 
complete. 

THEOREM 2. Let a be any automorphism of the discrete abelian group 
H\ if a has no finite orbits then it has an infinite number of orbits.10 

Case I. We assume first that there is in H an element <£o of finite 
order. By raising 0O to a suitable power we may assume that the order 
of 0o is a prime p. Write </>n=0o

an, n = 0, ± 1 , ± 2 , • • • ; we shall prove 
that the 0 n are independent mod p. (It is clear that the order of 
each </>n is p.) Suppose, on the contrary, that $.* • • • $ * = !.; it is 
merely a notational change to write i\— 1, • • - , ik — k, and we may, 
of course, assume that r± and rk are not congruent to zero mod p. We 
have then 

(1) 4>l = ( 0 2 ' ' ' <t>k ) , $k = (01 • * • 0/e-l ) 

(The exponents rfl, rk~
l make sense since we may interpret them in 

the modular field GF(p).) Consider now the finite subgroup H0 of H 

10 The author 's thanks are due to R. Baer, R. H. Fox, and H. Samelson for many 
valuable discussions of this theorem and its proof. 
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generated by 0i, • • • , $*,. I t follows from the definition of the 0W and 
the relations (1) that H0 is invariant under both a and a"1 and con­
tains consequently the entire orbit of </>o. Since this contradicts the 
assumed nonexistence of finite orbits, the 0W must indeed be inde­
pendent. The desired conclusion follows at once: the elements 
^n = 0i • • • 4>n, w = l, 2, • • • , must all lie in different orbits. 

Case II . If 0o is an element of infinite order we write 0i = 0Jf as 
before and we ask for which (positive or negative) integers i it is true 
that (j>i is a positive rational power of <jf0 (that is, a positive integral 
power of some root of </>0). If </>; = <#! then (0_^ r = (0o)a~* = (0iOa~*==0o, 
so that <t>-i is an rth. root of </>0. If also 0j = 0o then <t>i+j= (</>/)a* = </oa* 
= 0|f5 = 0™. In other words the set of i's under consideration is an 
additive group of integers ; let io be a generator of this group, 0*o =</o°. 
Then for any integer n 

<£i> = ( • • • ((#o) ) • • • ) = <Êo°î 

in other words the set of possible r's that may occur as exponents in 
a relation 0t = </>S consists of all (positive, negative, or zero) integral 
powers of r0. Hence the set of powers of <f>o which are in the same orbit 
as 0o consists only of powers of ro, and consequently there is a power 
of 0o which does not lie in this orbit. We may choose this power of 0o 
as a new starting element (of infinite order) and repeat the above 
argument ad infinitum. This completes the proof of Theorem 2. 

We are now prepared to describe the spectral type of ergodic auto­
morphisms. Let S be a complete orthonormal set in an abstract, not 
necessarily separable, Hubert space and denote by ip any particular 
element of S . Arrange all remaining elements of S as an infinite 
matrix in such a way that each row contains a countably infinite 
number of elements. Use as row index any set of suitable power and 
as column index the set of all (positive, negative, or zero) integers. 
A unique unitary operator a is defined on Hubert space by the re­
quirement that it send \f/ into itself and cfrij into 0i,/+i for 7 = 0, ± 1 , 
± 2 , • • • , and all i. The spectral type of a depends only on the num­
ber of rows; if we agree to use fc$ for this cardinal number we may 
write <r = or(^). We summarize our result in terms of these cr's. 

THEOREM 3. If ais a continuous ergodic automorphism of a compact 
abelian group G and & is the {necessarily infinite) cardinal number of G* 
then a has the spectral type of the unitary operator cr{b$). 

For the proof we need remember only that the characters of G 
form a complete orthonormal set of elements of L2{G). The principal 
character plays the role of \p and the orbits of the other characters 
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may be written as the rows of the matrix mentioned above. Theorem 2 
shows that there must be an infinite number of rows, and the well 
known fact that for any infinite cardinal fc< •t<o= :^11 shows that the 
number of rows is the same as the total number of elements in G*.12 

3. Examples and questions. Let H be any compact abelian group 
and let G be the direct product of H with itself a countable number of 
times. We write G as the set of all sequences {#n|w = 0, ± 1 , ± 2 , • • • }, 
and we define a continuous ergodic automorphism a of G by the rela­
tions 

( Xn ) ==: ( Xn ƒ , %n = Xn+ly ft =: \)f nr 1, JZ Z, • • • . 

Transformations isomorphic to such a's (not only in the spectral but 
even in the stronger, measure theoretic, sense) were among the first 
known examples of ergodic transformations. 

Examples apparently very simple from the algebraic point of view, 
but very difficult to handle geometrically, are furnished by the sole­
noids. Consider for instance the multiplicative group of all real num­
bers of the form er, where r is a dyadic rational number. The operation 
of squaring is an automorphism of this group (with no finite orbits), 
and hence an ergodic automorphism of its compact character group. 

More in the classical spirit than either of the last two examples 
are the (continuous) automorphisms of the w-dimensional toral group. 
In order to retain our multiplicative notation we write the torus as 
w-tuples (#i, • • • , xn) of complex numbers of modulus one ; thus the 
product of (xi, • • - , xn) by (yi, • • - , yn) is (xiyi, • • • , xnyn) and the 
identity element is (1, • • • , 1). I t is well known that the automor­
phism group of the torus is the unimodular group, in the following 
sense. Given any nXn matrix a — (a^) whose elements are integers 
and whose determinant is ± 1, we consider the mapping (xi) —»(HjffJ'0 '• 
this mapping is the most general continuous automorphism of the 
torus. The condition of ergodicity—that is, the condition that, con­
sidered as an automorphism of the character group, a have no finite 
orbits—is equivalent in classical terms to the requirement that no 
root of unity should be a proper value of a. This remark enables us 
to write down any desired number of quite different looking analytic 
ergodic (and hence mixing) measure preserving transformations on 
the finite dimensional torus. 

11 See F. Hausdorff, Mengenlehre, Berlin, 1935, p. 71. 
12 The first explicit discussion of the spectral form of a measure preserving trans­

formation of type o-(^o) was carried out by J. L. Doob and R. A. Leibler, On the 
spectral analysis of a certain transformation, Amer. J. Math. vol. 65 (1943) pp. 263-272. 
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This last example and the particular structure of the automor­
phisms it describes suggests a new, purely measure theoretic, invari­
ant of measure preserving transformations. The Hamilton-Cayley 
equation says, in our notation, that if p is the characteristic poly­
nomial of a then for every x in the torus xp(a) = 1. I t follows that for 
every character ƒ of the torus we have, similarly, fp(oc) = 1. The exist­
ence or nonexistence of ƒ s thus annihilated by certain polynomials 
in a (with, of course, integer coefficients) and, if they exist, their 
algebraic and measure theoretic structure, furnishes the invariant to 
which we referred. To illustrate the possible application of these in­
variants we mention the following: if it could be proved that the char­
acters are (except for trivial changes on a set of measure zero) the only 
measurable functions of constant modulus one which are annihilated 
by p(a), it would follow rather easily that two ergodic automorphisms 
of the torus are measure theoretically isomorphic if and only if they 
correspond to conjugate elements in the unimodular group. We could 
thus obtain the first examples of measure theoretically distinct trans­
formations of the spectral type of <r(\Ü o),13 and the usual proper value 
theory would then point the way to further, more delicate, invariants. 

In conclusion we mention an unsolved problem of purely technical 
interest, but one whose solution may throw some light on the deeper 
problems raised above. The question is simply : do there exist measure 
preserving transformations (on spaces of finite measure) of the spec­
tral type of <r(fc$), where ^ is a finite cardinal? 

SYRACUSE UNIVERSITY 

13 The first examples of measure theoretically different but spectrally isomorphic 
transformations are due to J. von Neumann. These examples (not yet published) are, 
however, not mixing transformations. 


