
SOME SIMPLE DIFFERENTIAL DIFFERENCE EQUATIONS 
AND THE RELATED FUNCTIONS 

H. BATEMAN 

1. Introduction. The work of Brook Taylor, Jean Bernoulli and 
Daniel Bernoulli led to the formulation of differential difference equa­
tions which are all included in the equation 

Md2un/dt2 + 2Kdun/dt + Sun 

= {na + a + b)(un+i — un) — (na + c)(un — un-i) 

in which M, K, S, a, ô, c are constants. This equation may be treated 
in at least six different ways, which may be described briefly as follows : 

(1) The method of simple solutions in which the aim is to express 
the desired solution as a sum of simple solutions of type 
(1.2) un(t) = Un(j>) exp (ipt), 

in which p is a constant which may assume a certain set of values. 
This method was used with great success by the writers just named 
and was much improved by L. Euler, J. le Rond d'Alembert, J. L. 
Lagrange and J . Fourier. The method has been greatly developed 
during the last one hundred fifty years. Some idea of this development 
may be derived from the excellent report of H. Burkhardt1 on ex­
pansions in series of oscillating functions. 

(2) The method of generating functions in which a differential 
equation is formed for the generating function 

G(Z, t) = J2 ZnUn{t). 

This method may, perhaps, be associated with the names of Lagrange 
and Laplace as these writers developed a theory of generating func­
tions. The important developments for the differential difference 
equation came quite late and began, perhaps, with the work of 
Koppe2 on the function which I shall call the influence function for 

An address presented before the Los Angeles meeting of the Society on November 
28, 1942, by invitation of the Program Committee; received by the editors December 
26, 1942. 

1 H. Burkhardt, Entwicklungen nach oscillirenden Funktionen und Integration der 
Differentialgleichungen der mathematischen Physik, Jber. Deutschen Math. Verein. 
vol. 10 (1908) pp. 1-804. 

2 M. Koppe, Die Ausbreitung einer Erschiltterung an der Wellenmaschine durch 
einen neuen Grenzfall der Besselschen Functionen, Program Andreas-Real-gymnasium, 
Berlin, No. 96 (1901) 28 pp. See also T. H. Havelock, On the Instantaneous propa­
gation of disturbance in a dispersive medium, Philosophical Magazine (6) vol. 19 (1910) 
pp. 160-168; E. Schrödinger, Dynamik elastischer gekoppelte Punktsysteme, Annalen 
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the equation 

(1.3) d2Un/dt2 = Un+l + Un-1 ~ 2 ^ n . 

(3) The method of definite integrals in which the aim is to express 
un(t) in the form of a definite integral such as 

un{t) = I znf(z, t)dz 

(4) The operational method which depends upon the formation of 
a difference equation satisfied by the integral 

• • 00 

Un(x) = I e~xtun{t)dU 

Integrals of this type were used by L. Euler3 and P. S. Laplace4 to 
solve differential equations and difference equations by means of 
definite integrals. The operational method is really the inverse of the 
transformation of Euler and Laplace since the equation satisfied by 
un(t) is known, while in the method of transformation the equation 
satisfied by un(t) is derived from an equation satisfied by Un(x). A 
form of the operational method was used by Poisson5 in the solution 
of two differential difference equations occurring in the theory of the 
conduction of heat in a bar. 

In the case of equation (1.1) the equation for Un(x) is 

(na + a + b)(Un+i — Un) — {na + c)(Un — Un-i) 

+ Mun' (0) + (IK - Mx)un(!S) = (Mx2 - 2Kx + S)Un. 

This is a difference equation. It is homogeneous for n^m if the initial 
conditions are of type 

^n(O) = 0, n 9e m, um(0) = 1, un' (0) = 0. 

For n — m the equation is not homogeneous. The solution of the set 

der Physik (4) vol. 44 (1914) pp. 916-934; F . Pollaczek, Über die Fortpflanzung 
mechanischer Vorgdnge in einen linearer Gitter, Annalen der Physik (5) vol. 2 (1929) 
pp. 991-1011. 

3 L. Euler, De constructione aequationum, Akademiia Nauk, Novi Commentarii 
vol. 9 (1737) 1744 pp. 85-97; Integralrechnung vol. 2 section II , chaps. 10, 11. 

4 P . S. Laplace, Mémoire sur les approximations des formules qui sont f onctions de 
très grands nombres, Mémoires de l'Académie Royale des Sciences de Paris (1782; 
1785) \ Oeuvres, vol. 10. 

5 S. D. Poisson, Mémoire sur la distribution de la chaleur dans les corps solides, 
J. École Polytech. vol. 12 (1823) pp. 1-144. 
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of equations may be made unique by adding suitable end conditions. 
In some cases the condition that Un(x) should be finite for n= ± <& 
is appropriate. Thus for the equation corresponding to (1.3) the in­
fluence function is 

Um,n(x) = (1 + *2)-1 /2[(l + a;2)1'2 - x]2n~2™, n > m. 

For n<m the index is 2ni — 2n. This function Um,n corresponds to 
Koppe's influence function 

Um,n(t) = J2(n-m)(2t), 

and it seems desirable to use the same name in both cases. Recurrence 
relations which are all of the same type except for one or two values 
of n are of frequent occurrence in the theory of structures. A case 
which bears some resemblance to the present one occurs in the work 
of E. H. Bateman6 on the stability of tall building frames. The frame­
work considered by this writer is described as a two-column bent of 
N stories rigidly connected together, the beams being connected to 
the columns by joints of variable rigidity. This framework is acted on 
by a horizontal load at any panel point. The cases of vertical loading 
on the beams is also considered, the two cases of horizontal and verti­
cal loading being discussed separately. 

An influence function for equation (1.1) may be found by the 
method of the generating function. When the differential difference 
equation is of the first order the requirement that wn(0)=0, n = m, 
um(0) — 1, implies that G(z, 0) = zm and so the arbitrary factor in the 
solution of the differential equation for G is determined. The influence 
function for some simple cases is given in the following table : 

1. dun/dt = un+i — un, tm~ne-tIY{m — n-\-\), 

2. dun/dt = un-i-un, t^e-'/Tin-fn+l), 

3. 2dUn/dt = Un+l — Un-.i, Jm-n(t), 

4. 2dun/dt = un+i+un-.i — 2uni e-*Im-n(t), 

5. 2dun/dt = un-2un+i+un+2, ettHit1t2)m-nHm^n(it
1i2)/T(tn--n+l), 

where in the last case 
00. 

exp (zt - f••/'2) = X) tnHn(z)/n\. 
n==0 

Jn(z) denotes the Bessel function of order n, In(x) is the Bessel func-

6 E. H. Bateman, The stability of tall building frames, Institute of Civil Engineers, 
London, Selected Paper No. 167, 1934, 49 pp. 
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tion of imaginary argument multiplied by the proper factor, Hn(z) 
is the polynomial of Hermite and F(z) is the Gamma function. 

When only the second derivative appears on the left-hand side of 
the equation the requirement chosen for the definition of the influence 
function is wn ' (0)=0, un(0)=0, n^m, wm(0) = l, and two additional 
cases of interest are: 

6. d2un/dt2 = un+1-un, (t/2)^«+uv^-Vt(t)/T(m-n+\), 

7. d2un/dt2 = un-i-un, (t/2)n-™+1'2Jn-.m-1/2(t)/T(n-rn + l). 

(5) The method of power series. In the case of equation 2, for in 
stance, there is a solution of type 

Unit) = ƒ(») + (* - k)[f{n - 1) - f(n)] + • • • 
oo 

= E (t - to)mAmf(n)/m\, Af(n) = ƒ(» - 1) - ƒ(»), 
n=0 

as noted by G. Doetsch.7 The function ƒ(n) is given by the equation 
f(n)=un(to), and Amf(n)=u^i)(to). Doetsch remarks that when un(to) 
=lM*, t)=er**ft/nl we have u%\h) = (d"/dtS)fo(n, t0)=^m(ny t0) 
— pm(n, to)\[/o(n, to), where pm(x, t) is Charlier's polynomial. In this 
case un(t) =i/'o(w, t)} and u^l)(t)=\//m(n1 t) is also a solution. 

(6) The method of successive approximations. In this method the 
equation is divided into two parts. One of these is multiplied by a 
parameter k and a solution is sought which can be expressed as a 
power series in k. The coefficients are determined by a succession of 
equations which in many cases can be solved very easily. The 
parameter k is then set equal to 1 after all the operations. In the case 
of equation 1, for instance, we use the form un+i = k(l+d/dt)un 

and find that the power series for un(t) reduces to a single term 
un(t) =kn(l+d/dt)nf(t), where ƒ(/) is an arbitrary function which can 
be differentiated an unlimited number of times. In the case of equa­
tion 6 there is a corresponding solution un(t) = {\-\-D2)nf(t) where 
D=d/dt. By choosing ƒ(/) = t~l cos t we obtain the solution un(t) = 
- ( l /2 ) r (w+l ) r ( l /2 ) ( / /2 ) - w - 1 / 2 F n + 1 / 2 (0 , and by choosing ƒ(/) = r 1 s i n / 
we get the solution un(t) = ( l / 2 ) r ( n + l)r(l/2)(//2)- r t-1/2J r

7 î+i / 2(/), the 
expressions for the Bessel functions being essentially those of Har-
grave and Macdonald.8 

2. Applications of differential difference equations. The polynomial 
7 G. Doetsch, Die in der Statistik seltener Ereignisse auftretenden Charlierschen 

Polynôme und eine damit zusammenhdngende Differentialgleichung, Math. Ann. vol. 
109 (1934) pp. 257-266. 

8 See E. T. Whittaker and G, N, Watson, Modern analysis, chap. 17, Ex. 30. 
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of Jacques Bernoulli Bn(x) satisfies the simple equation 

(2.1) d/dxBn{x) = nBn-i(x) 

which is satisfied also by all polynomials of Appell's type. When 
Bn{x)/n\ is denoted by un(x) the equation is 

(2.2) dun/dx = Un-i. 

This is a particular case of the equation 

(2 . 3) dUn/dt = kn-iUn-l — knUn 

which occurs in the theory of probability and in the theory of the 
chain processes of chemistry and radioactivity. The literature on this 
branch of the subject is now quite large. Equation 2 of §1 is also a 
special case of equation (2.3). Equation 1 may be regarded as the 
adjoint of equation 2 and it should be noticed that the influence 
function for this equation is derived from the influence function for 
equation 2 by interchanging m and n. This property is analogous to 
one which occurs in the theory of the Green's function for a linear 
differential equation and in the theory of the influence functions of 
the theory of structures. 

In mechanics and in the theory of elasticity the differential differ­
ence equations of chief importance are those in which central dif­
ferences occur. In his interesting book Weather prediction by numerical 
process, L. F. Richardson emphasizes the advantage of using cen­
tral differences when difference equations are to be used to furnish 
approximate solutions of differential equations occurring in the solu­
tion of mechanical problems. He was led to this conclusion by some 
preliminary work on the elastic problem of the masonry dam. An 
account of this work is given in his paper The approximate arithmetical 
solution by finite differences of physical problems, Transactions of the 
Royal Society of London vol. 210A (1910) p. 307. 

Following Richardson's lead an attempt will be made here to use 
the method of divided differences in the solution of various elastic 
problems. For brevity differential difference equations may be called 
jDA-equations. This notation, however, may be thought to denote 
simply the equations of mixed differences studied by Poisson, Biot 
and others. A simple case of such an equation 

u\x) = au(x — 6) — bu(x) 

is included in an equation which has become important in economics 
and has been discussed in several of the recent volumes of the publica­
tion Econometrica. 
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3. DA-equations in the theory of the compound pendulum. In the 
case of a pendulum consisting of a light string with equal masses 
equally spaced and a large mass at the end, the equation of small 
vibrations is of type 

mxn + Sx = (M + nm)g(xn+i — xn) 

— (M + nm — m)g{xn — xn-i)-

For greater generality a spring has been added so that each mass when 
displaced is acted upon by a restoring force proportional to the dis­
placement xn. 

In the case of a periodic displacement xn(t) = Xn cos (pt) the differ­
ence equation satisfied by Xn is of type 

(3.2) (n + s + l)Xn+1 + (n + s)Xn-t = (In + 1 + r - kp*)Xy 

where r and k are positive constants. 
The equation of motion of the mass M is simply 

M xo + Sxo = Mg(x\ — XQ) 

and so if Xo = X0 cos (pt) the equation connecting X\ and Xo is 

0 + l )Z i = (1 + r - s - kp2)X0. 

If kp2 = z the quantity Xn is a polynomial of degree n in z. 
In the more general case in which the spring attached to the mass 

M is of different strength S', the equation connecting X\ and X0 is 
of type 

(3.3) (s+l)Xi= (<?- kp*)Xo, 

where q is a constant and Xn is again a polynomial of degree n in z. 
When the string is regarded as of infinite length, the solution of the 

initial value problem may be solved by finding a weight function w(z) 
such that 

w(z)Xn(z)Xn,(z)dz = { , , 
o 11, » = », 

for then if xw(0) = 0 , n^n', xn>(0) = 1, #„' (0) = 0 , we have the formula 
for the influence function9 

/

I CO 

0 
(3.5) Xn>yn(t) = I w(z)Xn(z)Xn>(z) COS (pt)dz = #n,n'(0-

9 The function xn
f,n(t) has also been called a selective function, see H. Bateman, 

Selective f unctions and operations, Amer. Math. Monthly vol. 41 (1934) pp. 556-562. 
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The function w{z) often may be found by solving the problem of 
the moments. Since Xo is a constant which may be taken to be unity 
the first equation is 

I w{z)dz = 1. 
J o 

The recurrence relation may be used to find X\, X2f • • • , succes­
sively, and as these are polynomials in z the orthogonal relation, with 
n' = Q, will give the values of the integral 

/

» 00 

znw{z)dz, n = 1, 2, 3, • • •. 

o 
In most cases of physical interest the function w(z) is positive for 

values of z exceeding a certain number a which is either zero or a 
positive quantity. In the simple case of a pendulum without springs 
and without the mass M a t the end, the function w(z) is exp ( — z) 
and Xn = Ln(z) where Ln(z) is the polynomial of Daniel Bernoulli,10 

J. L. Lagrange and E. Laguerre. When the pendulum is suspended 
from a point at which a mass would ordinarily be concentrated the 
number p is given by an equation of type LN(Z)=0, and the initial 
value problem may be solved by a method indicated by J. L. La­
grange11 and Bottema12 in which the first essential step is the deriva­
tion of an orthogonal relation of type 

N 

(3.6) E £»(*)£»(*') = 0, z*z', 

where z and z' are different roots of the equation LN(z) =0 . The dis­
placement un{t) is then expressed in the form 

N 

(3.7) Un(t) = E [cmLn(zm) cos (pmt) + bmLn(zm) sin (pmt)]9 
m—l 

the coefficients bm and cm being derived by means of the orthogonal 
relation. The initial value problem may be solved also by means of 
the method used for the infinite string if the differential equation is 

10 D. Bernoulli, Akademiia Nauk, Novi Commentarii vol. 6 (1734) p. 108, vol. 7 
(1935) p. 162. 

11 J. L. Lagrange, Méchanique analitique, Part 2, Paris, 1788; Oeuvres, vol. 11, 
Paris, 1888, section 6. See also Miscellanea Taurinensis, vol. 3 (1762-1765), Oeuvres, 
vol. 1, p. 534. Lord Rayleigh, Theory of sound, vol. 1 (1877) p. 129. 

12 O. Bottema, Die Schwingungen eines zusammengesetzten Pendels, Jber. Deutschen 
Math . Verein. vol. 42 (1933) pp. 42-60. 
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used to continue the values of the initial displacements and velocities 
to the fictitious masses beyond the point of suspension of the string. 
This method is generally laborious and may not give simple expres­
sions for the displacement and velocity of the fictitious particles far 
away from the point of suspension. 

I t should be remarked that when the solution for initial veloci­
ties without initial displacement has been found, the corresponding 
solution for initial displacements without initial velocities may be 
derived by differentiation with respect to / in the manner described 
by the rule of Stokes for the initial value problem for a differential 
equation of the second order with respect to the time. d'Alembert's 
solution of the equation d2u/dt2 = d2u/dx2, u = 2~1f(x-\-f)+2~1f(x — t) 
-\-{l/2)fx

xt\g{z)dzi furnishes a good example for the explanation of 
the rule. The integral represents the solution of the initial value prob­
lem u = 0f du/dt = g(x) and when it is differentiated with respect to / 
it gives the function 2~lg(x-\-t) + 2~lg{x — i), which is the solution 
of the initial value problem u=g(x), du/dt~0. Replacing g by ƒ in 
this expression and adding to the integral we have the solution of the 
general initial value problem u—f, du/dt — g. 

4. Derivation of asymptotic forms. The operational method is often 
useful for the derivation of an asymptotic form of the influence func­
tion by means of a method developed by A. Haar,13 G. Doetsch14 and 
others. This method is the analogue for integrals of the method of 
Darboux for finding an estimate for large values of n of the coeffi­
cient of zn in the expansion of a function in a power series with a 
finite radius of convergence. The method of Darboux is based on a 
study of the behavior of the function around the singularities on the 
circle of convergence. In the case of an integral of Laplace's type a 
straight line parallel to the imaginary axis is the boundary of the 
region of convergence and it is necessary to consider the form of the 
function represented at the singularities which lie on this line. For 
example, in the case of the integral 

(4.1) f e-xtJn(t)dt = (1 + *2)-1 /2[(l + x2)112 - x]n, R(x) ^ 0, 
J o 

there are singularities at x= ±i on the line R(x) = 0 and it is readily 
found that if s = 2n + 1 

13 A. Haar, Über asymptotische Entwicklungen von Funktionen, Math . Ann. vol. 96 
(1926) pp. 69-107. 

14 G. Doetsch, Ein allgemeines Prinzip der asymptotischen Entwicklung, J. Reine 
Angew. Math . vol. 167 (1932) pp. 274-293. 
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Jn(i) ~ (27rt)-ll2(e(it-isrIi) + e(
isir/*-u) 

= (2/TT/)1/2 COS [t- (n + l /2)x/2] . 

Similarly the relation 

I «r»'«» I ƒ„(«)<& = x-\\ + ««^'«[(l + s2)1'2 - *]», £(*) è 0, 
•/ o J o 

gives the estimate 

f Jn(z)dz ~ 1 + (27T/)-1'2 sin [f - (n + 1/2)TT/2]. 
•J o 

These estimates are useful in the discussion of the solution of equa­
tion (1.3) which is given by the series 

00 00 S% t 

( 4 . 2 ) Unit) = S ^ 2 < n - m ) ( 2 / ) « m ( 0 ) + X W ™ ( ° ) I J2{n-m){2s)ds. 

m=—oo m=—oo ** 0 

When / is large each term in the second series gives a finite residual 
disturbance. These residual disturbances would be eliminated even­
tually in the case of a finite string by reflections at the ends. The 
existence of a residual displacement is worth noting, however, as in 
this respect equation (1.3) differs from its generalization to 2 or more 
variables of type n. 

When only one particle has an initial displacement or velocity it is 
necessary, as Koppe points out, to find an estimate of J2n(2/) and its 
integral for values of In and 2/, which are of about the same order of 
magnitude. Some results of this nature were already known but 
Koppe indicated the advantage of making a substitution of type 
x — n = v(n/6)m when discussing the form of Jn(x) for large values of 
n and x. 

The investigations relating to the asymptotic form of Jn(x) began 
when Lagrange published his solution of Kepler's problem in the form 
of a sine series with coefficients of the form Jn(ne) and analogous se­
ries were obtained by Bessel, Poisson, Hansen and others. Asymptotic 
forms of the coefficients were needed to decide the question of con­
vergence and notable work was done by Laplace, Poisson, Carlini, 
Jacobi, Cauchy and Hansen. A second period of investigation began 
when Debye, Watson and others used the method of steepest descent 
to estimate the values of definite integrals representing Bessel func­
tions, and methods based on the transformation of differential equa­
tions and integrals were employed by Nicholson, Langer, Van Veen, 
Fock and other writers. Estimates of the integral of the function 
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Jn(x) have been given by Pollaczek. Some of the results of these in­
vestigations are summarized below, the chief terms of the estimates 
are the only ones given. 

x — n sech a, a > 0, 

Jn(x) ~ (2TTI tanh a)-1/2e~n^a'taiiha\ 

/
Jn-i{w)dw ~ (lirn tanh a)-1/2(coth a + l )*-»»<<»-tanh a\ 

o 

x = n sec b, 0 ^ 5 ^ ir/4, 

/»(*) — (l/2)ira tan £)~1/2 cos [»(tan b - b) - TT/4], 

ƒ Jn-i(w)dw ~ 1 + ((l/2)wn tan 6)~~1/2 cosec £ 

•cos [w(tan 5 — 6) + £ — 3TT/4], 

A(#) ~ (1 — b cot 6) [cos (ir/6)Juz{n tan £ — nb) 

— sin (ir/6)Yi/z(n tan Z> — »&)]. 

If |# —n\ <<Cw2/s Nicholson's estimate is 

ƒ
» oo 

cos (/3 - wt)dt, 
0 

and when x — n = v(n/6)1/z Pollaczek's estimate is 

f Jn^{w)dw ~ (1/2W) | e-tZ+vteiv,zdt/t. 

For these results reference may be made to Burkhardt's report,1 

Watson's book,15 Pollaczek's paper2 and the papers of Langer16 and 
Fock.17 

The following table shows that the maximum of JidjLi) occurs at a 
time slightly greater than t = n. 

15 G. N. Watson, Bessel functions, Cambridge University Press, 1922. 
16 R. E. Langer, On the asymptotic solutions of ordinary differential equations with 

an application to the Bessel functions of large order, Trans. Amer. Math Soc. vol. 33 
(1931) pp. 23-64; On the asymptotic solutions of ordinary differential equations, with an 
application to the Bessel functions of large complex order', Trans. Amer. Math. Soc. 
vol. 34 (1932) pp. 447-480. 

17 V. Fock, Neuer asymptotischer Ausdruck fiir Besselsche Funktionen, C. R. 
(Doklady) Acad. Sci. U.R.S.S. (2) vol. 1 (1934) pp. 97-102; see also A. Svetlov, 
Ueber die asymptotischen Ausdrücke fur Besselsche Funktionen bei grossen Indexen, 
ibid. (2) vol. 2 (1934) p. 448. 
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t 

n 
0 
1 
2 
3 
4 
5 

0 

1 
0 

1 

.2239 

.3528 

.0340 

2 

-.3971 
.3641 
.2811 
.0491 

3 

-.2429 
.3576 
.2458 
.0565 

4 

-.1130 
-.1054 
.3376 
.2235 
.0608 

5 

-.0145 
.3179 
.2075 

6 

.3005 

5. Surges in springs and connected systems of springs. The use of 
concentrated masses has been found advantageous in the study of 
surges in springs such as those of spiral or helical type. Reference may 
be made to the bibliography in an admirable paper on the subject by 
K. J. De Juhasz.18 

An important equation which is a simple generalization of (1.3) is 
obtained when the concentrated masses on a light string are mounted 
on springs arranged either along a straight line or on the circumfer­
ence of a circle or helix. The simplest form of this equation is 

( 5 . 1) d2Un/dt2 = Un+l + Un-1 ~ 2 (1 + k)tln, 

where k is a positive constant. If G(z> t) =XX= -*>znun(t) is the generating 
function d2G/dt2 = (z-l+z-2k-2)G and if tt»(0)=0, n^0, u0(0) = l, 
Un (0) = 0 , an appropriate solution is 

(5.2) G(z, t) = ch[t{z~l + z - 2 k - 2)1/2]. 

I t is readily seen that f0 exp (—xt)G(z, t)dt = x(x2 + 2k + 2—z — z~1)~l. 
For sufficiently large values of R(x) 

ƒI 00 

e~xtUn{t)dt = x[(x2 + 2k + 2)2 - 4]~1'2[k + 1 + x2/2 - y]n, 
o 

where y2 = (k + 1 +x2/2)2 - 1 . 
An application of Haar's method indicates that for large positive 

values of / 

un(t) — (2wt)-^2[(2k)^ cos {t(2kyi2 + TT/4} 

+ (2k + 4)1 '4 cos {/(2* + 4)1 '2 - T/4 - mr] J. 

I t should be noticed that we also have the equation 
18 K. J. De Juhasz, Graphical analysis of surges in mechanical springs, Journal of 

the Franklin Institute vol. 226 (1938) pp. 505-526, 631-644. The free vibrations of 
helical springs are treated by the same author in vol. 227 (1939) pp. 647-672. 
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/

» 00 

e-ut2un(t)dt = (l/2)(ir/«) exp ( - (* + l)/2u)I«(l/2u), 
o 

but this expression for the Laplace integral has an essential singular­
ity at the point u = 0 and is not so convenient for the deduction of the 
asymptotic form of un(t). An extension of Haar's method is needed 
which will make the deduction easy in such a case. In applying Haar's 
method to equation (5.3) it is advisable to approach each of the 
four singularities, x=i(2k+4)V2, x=i(2k)1/2, x = -i(2k)112, x=~i 
• (2/fe+4)1/2, from the right along a line parallel to the real axis. The 
limiting forms of the arguments of the factors of [(x2 + 2& + 2)2 — 4]~1 / 2 

may then be written down for each line of approach without any 
error. 

I t is important to notice that in the present case we find by putting 
x = 0 in equation (5.3) that 

ƒ
i oo 

ujt)dt = 0. 
o 

Hence there is no residual displacement when all the masses are 
originally in the equilibrium position and the mass numbered 0 is 
given an initial velocity. The displacement vn(t) at time / is in fact 
i*n(t) = fl

QUn(s)ds and this tends to zero as /—•>«>. This result is quite 
different from that in Koppe's case when f0 J2n(2s)ds = 1/2. 

6. The equations of Born and Kârmân. In their work on crystal 
lattices in vibration Born and Kârmân19 considered equation (1.3) and 
also a pair of equations which may be written in the form 

/ d2x2n/dt2 = a2(x2n+i + X2n-i ~ 2x2n), 
(6.1) 

d2X2n+l/dt2 = b2(x2n+2 + %2n ~ 2 # 2 n + l ) . 

If the initial conditions are X2n(0) = 0 , n^rn, #2n+i(0) = 1, #2n+i(0) =0 , 
xJl (0) = 0 , there are two generating functions, 

oo oo 

(6.2) E(z, /) = E x2r,(/)2
2", 0(z, /) = E x2n+i(t)z2n+l, 

n = — o o n=—oo 

which satisfy the equations 

d*E/dfi = a\z + z-W - 2a2E, 
(6.3) 

dH)/df = b\z + tr^E - 2bX>. 

19 M. Born and Th . v. Kârmân, Ueber Schwingungen in Raumgittern, Physikalische 
Zeitschrift vol. 13 (1912) pp. 297-309. 
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If m = 0, 

d2 = a2b2(z + z~1)2 + (a2 - b2)2, 

d - (a2 + b2) = c2, d + a2 + b2 = *2, 

£(2, *) = [(d + b2 - a2)/2d]ch(ct) + [(d + a2 - b2)/2d] cos (kt), 

0(z, t) = [ft2(z + 2T0/W] M(c/) ~ cos (kt)]. 

It is advantageous to write 

X2n(t) = U2n{t, a, b) + (b2 - a2)v2n(t, a, ft), 
(6.4) 

%2n+i(t) = b2v2n(t, a, b) + b2V2n+2(t, a, ft), 

where u2n and v2n are symmetric functions of a and ft. The generating 
functions of u2n(t) and V2n(t) are respectively 

00 

#(*, /) = Z * 2 r W / , a, ft) = (l/2)ch(ct) + (1/2) cos (&/), 
(6 . 5) n=-oo 

Viz, t) = J2 z2nv2n(t, a, ft) = (l/2d)[ch(ct) - cos (kt)], 

and if Z7n(w, a, b)=f^e~utun(t, a, b)dt} Vn(u, a, b)=f™e~utvn(t, a, ft)d/, 

(6.6) #„(«, ay ft) = (^2 + a2 + ft2)£>"E, Fw(«, a, ft) = DnEy 

where 2aftZ> = (u2 + 2a2) ̂ (w 2 + 2ft2)1/2 - (w4 + 2a V + 2b2u2)l'2y 

E= [(w2 + 2a2)(^2 + 2ft2)(w2 + 2a2 + 2ft2)]-1/2. There is also a relation 

f% 00 

(6.7) I e~utun(t, a,b)dt/t = Dn/2n. 

Use of the multiplication theorem for integrals of Laplace's type gives 
the addition formula 

I vm(t — sy a, 
J o 

b)un(s, a, b)ds/s = vm+n(t, a, b)/2n. 

The differential equations satisfied by the functions u2n(t, a, ft), 
V2n(t, a, ft) are 

d2V2n/dt2 = U2n ~ (a2 + b2)v2n , 

(6.8) 
d2U2n/dt2 + ( # 2 + b2)d2V2n/dt2 = a2b2(V2n+2 + V2n-2 ~ 2v2n). 

Elimination of u or v gives the result that u and Ü both satisfy the 
differential difference equation 

dAU2n/dt4 + 2(a2 + b2)d2U2n/dt2 = d2b2(U2n+2 + ^ 2 n - 2 — 2 ^ 2 n ) . 

The behavior of ^2n and v2n for large values of t may be found by 
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Haar's method. The result is that if b>a>0, m = 0, 

U2n(a, b, t) = 2 - 8 ' 'V ) - 1 / 2 [(J2_a2) 1/21a-i/ij-i 

•cos [aj!21/2-(2«+l/2)7r/2]+a-16-1/2 

• cos (ftö1'*- (2«- 1/2)T/2) } + (02+ft2)8/4/«ft) 

(6-9) 
•cos {*(2a*+26*) l /*-T/4}], 

»i»(a, ft, *)~2-»'4Grf)-1'l[(l/aft(a*+ft*)1/«) 

•cos {/(2a2+2ft2)1/2-5x/4}+(l/aft1/2(ft2-«2)1/2) 

•cos {/(2ft2)1/2-37r/4-W7r}+(l/ft(a)1'2(ft2-a2)1/2) 

•cos {/(2a2)1 '2-x/4 

Asymptotic forms for X2n(i) and X2n+i(t) were worked out by one of 
my students, C. C. Lin, for the case b>a, with the aid of expres­
sions for J0 e~utX2n(t)dt, f0 e~~utX2n+i(t)dt. The results agree with those 
derived from the foregoing formulae. The case a>b>0 seemed more 
difficult but the difficulties are avoided in the present method, as use 
is made of the symmetry of U2n and v2n in a and b. Lin's result is that 
if b2>a2, c=[2(a2+b2)]1'2, 

x2n(t) ~ ( 2 / T 0 1 / 8 [ ( Û / 6 ( < 0 1 / 2 ) COS (ct - TT/4) 

+ {{b2 - a2)1/2/^(^(2)1/2)1/2) cos (ait)1'2 - TT/4 - nw + mc)]9 

x2n+i(t) = (2b/a)(2/7rct)1/2 cos (ct - TT/4). 

Asymptotic forms are needed also for the case in which ct and 2n 
are both large and of the same order of magnitude. Differential equa­
tions for U2n{t) and v^nit) may be derived from those satisfied by their 
Laplace transforms, but the equations are of high degree and the 
work of deriving the asymptotic forms from the differential equations 
has not yet been attempted. 

7. Derivation of the solution of an initial value problem with the 
aid of Poisson's formula for a solution of the wave-equation. Poisson's 
formula20 for a function w(x, y, z, t) which satisfies the wave equation 
d2w/dt2 = k2 (d2w/dx2+d2w/dy2+d2w/dz2) is 

(7.1) 4TTW(X, y, z, t) = d/dt\t f f dSf(kt)\ + t f f dSg(kt), 

20 S. D. Poisson, Mémoire pour la propagation du mouvement dans les milieux 
élastiques, Mémoires de l'Académie des sciences vol. 10 (1823). 
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where f {kt) is an abbreviation for the result of replacing a, b, c by 
kt sin 0 cos <j>, kt sin d sin </>, kt cos 0 respectively in the function 

(7.2) f(x + aty + bfg + c) 

and g(kt) has a similar meaning. The symbol dS stands for the elemen­
tary solid angle sin dddd<}>. 

I t should be noticed that the function (7.2) is a solution of the 3 
partial differential equations 

(7.3) d2f/dx2 = d2f/da2, d2f/dy2 = d2f/db2, d2f/dz2 = d2f/dc2. 

We now add subscripts p, q, r and assume the function ƒ to be a solu­
tion of the additional equations 

d2fp/da2 = fp+1 + fp-t - 2fp, 

(7.4) à*fq/db* = Ui + fq-i ~ 2fq, 

d2fr/dc2 = / r + 1 + ƒ,...! - 2/r. 

The function w(x, y, z, t) then becomes wPtqtr(x, y, z, t) and is a solu­
tion of the differential difference equation 

d2WPtq,r/dt2 = k2(wp+i,q,r + Wp-itQ,r + Wp,q+1,r + Wp,q-l,r 
\ ' • ^J 

+ Wp,q,r+l + ^3>,g,r-l ~ 6wPtqtr), 

The proof is quite simple because, on account of the equations 
(7.4), (7.3) satisfied by the function fPtq,r(x+a, y + b, z+c), the right-
hand side of (7.5) becomes, by virtue of (7.1), the sum of two in­
tegrals the first of which has in the integrand 

k\d2f/dx2 + d2f/dy2 + d2f/dz2) (subscripts p, q, r omitted), 

while the second contains a similar expression derived from the func­
tion gp,q,r(x+a, y+b, z+c), which is supposed to satisfy the same two 
sets of equations as fP,q,r> When, however, a, b, and c have the as­
signed expressions involving /, 0, and <f> it is a simple consequence of 
the properties of Poisson's integral that the resulting expression is 
equal to d2wPfqtr/dt2. 

In the particular case in which 

fp,qA% + a> y + b, z + c) 

•= J2(P-i)(2x + 2a)J2(q-m)(2y + 2b)J2(r-n)(2z + 2c) 

and gp,qAx+ai y + b, z+c) has a similar form we obtain a solution 
which furnishes a solution of the initial value problem for the equa­
tion (7.5). Putting x = 0, y = 0, z = 0 we write 
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(7.6) 

d r rr r2rr 

4Tlp,q,r\i,m,n(t) = — \t I I sin0ddd^Ji{v-i){2ktsin0 cos<j>) 
dt L J o •/ o 

'J2(q-m)(2kt Sin 0 Sin <j>)J2{r-n)(2kt COS 0) . 

In the two-dimensional case in which w is independent of r the 
equation for wPtQ is 

(7.7) d2wp>q/dt2 = *2(Wp+i,fl + w^i.g + wPfff+i + Wpf«-i - 4wPfff), 

and the influence function is given by 

d f rv r2r 

4ir/p,ffi«,»i(/) = — \ t I I sin0d0d0/2(p-*)(2£/sin0cos0) 

(7.8) 

'J2(q-m)(2kt sin 0 sin 0) . 

A change of axes indicates that there is a second formula 

t \ I sin 0 ddd(/)J2p~2i(2kt sin 0 cos 0) 

'J2q-2m(2kt COS 0) . 

The integration with respect to <j> can be effected and we get 

(7.9) IP,q;i,m(t) = / I sin0d0J2
p-.i(ktsmd)J2q-2m(2ktcosd) . 

2 dt L J o J 

This is the simplest expression that has been obtained for the function 
I. The method of the generating function indicates that 

00 00 

(7.91) xlymch[kt(x + x~l + y + y'1 - 4)1 '2] = Z Z Ip.qii.m(t)*py9-
33=—oo q——oo 

If we write 

{x + x-1 + y + y1 - 4) = (x1*2 - ar1 '2)2 + (y112 - y 1 ' * ) 2 . 

a power series for I may be obtained. On the other hand, if we multi­
ply the generating function by exp {—zt2) and integrate with respect 
to / from 0 to oo, the left-hand side of equation (7.91) becomes 

(1/2)(TT/*)1'2 exp k2(x + x~l + y + y-1 - 4)/4«, 

and so 
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e-*t2rPtqu,m(t)dt = (>ir/zyi2e~1<2l*Ip-l(k
2/2z)Iq-m(k2/2z). 

o 

When u is large and positive In(u)~(2ru)~~1/2eu and so when z—»0 we 
obtain the equation 

/

» oo 

Ip.ç;i.m(t)dt = 0. 
o 

Now the solution of the initial value problem is 

(7.94) wPtq(t) = Z)^.flïi.m(0wj,m(O) + X I ^ ^ « i u W ^ w u f O ) , 
J 0 

consequently there is no residue (as /—><x>) arising from an initial 
velocity imparted to one of the particles, and the associated displace­
ment of each particle ultimately approaches zero. 

I t may be noted that the function Ip,q(t)^IPtq;oto(t) satisfies the 
partial difference equation 

(7.95) Ç(Ip+l,q ~~ Ip-l,q) = P(Ip,q+l ~ Ip,q-l)> 

which is the analogue of the equation ydF/dx=xdF/dy which ex­
presses that F depends only on x2+y2. 

When it is desired to extend the present analysis to the equation 
d2w/dt2+d4uw/dx4!+2d*w/dx2dy2+d4iw/dyi = 0, which occurs in the the­
ory of a vibrating plate, use may be made of the approximations to 
partial derivatives of high order given in the paper of E. Pflanz.21 The 
expression which replaces the derivatives of the fourth order then 
consists of 25 terms. References are given to the work of other writers 
on this subject. 

8. Elastic waves in a lattice. Taking first the case of motion in two 
dimensions we replace the usual equations of motion by differential 
difference equations. Let Mp,qi ^p,q 

be the components of displacement 
at the lattice point (p, q) and let P , Q be operators such that 
(8.1) Fup>q = Up+l/2,q — «p_l/2,ff» QMp,q = Up>q+i/2 — Up,q-.l/2] 

then if X, fx are the elastic constants of Lamé the components of stress 
may be defined to be 

xxp,q = 2fjiPup,q + \{Pup,q + Qvp,q), 

(8.2) "yyp>q = 2fjQvPtQ + \{Pup,q + QvPtQ), 

xyp,q = yxp,q = fx(FvPtQ + Qup,q), 
21 E. Pflanz, Über die Annaherung linearer partieller Differentialausdrücke durch 

finite Ausdrücke, Jber. Deutschen Math. Verein. vol. 48 (1938) pp. 41-48. 
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and the equations of motion are 

pd2upJdt2 = nP2up,q + (X + p){P2up>q + PQvp,q) + nQ2up>q) 
(8.3) 

pd2vpJdt2 = fxP2vp,q + (X + n)(PQuPtq + Q2vp,q) + f*Q2p,q. 

These may be satisfied by writing 

up q = Aaapbqeiwt + Byapcqeiwt, 
(8.4) 

vPtQ = Apapbqeiwt - Baapcqelwt, 

where A, B, a, b, c, w are arbitrary constants and a=a112 — a~ll2
f 

j3 = bll2 — b~ll2
y y = cll2—c~*/2. Substitution in the equations of motion 

indicates, however, that these will be satisfied when a, b, c1 w are 
related to p, X, ix in such a way that 

(8.5) - pw2 = (X + 2/x)(a2 + 02), - pw2 = M(«2 + 72). 

The boundary condition will be taken to be (yyP,q) =0 , 'xyp,q = 0, for 
q = 0. This gives the two conditions A [2jU|82+X(a2+/32)] = 2p.Bay, 
2Aafi = B(a2—y2). Elimination of A and B gives the equation 

[2M/32 + X(a2 + P2)](a2 - y2) = 4p,a2Py. 

When the values of fi and y are inserted a relevant solution of this 
equation is 

(8.6) w = — IVROL, 

where VR is the velocity of the Rayleigh wave. If a = eiz, & = e~r, 
c = e~s we have 

P = 2sh(r/2)} y = 2sh(s/2), a = 2i sin (s/2), w = ± 27^ sin (s/2). 

Also if VL is the velocity of propagation of longitudinal waves, VT the 
velocity of propagation of transverse waves, 

w2/vl = 4 sin2 (0/2) - 4sh*(r/2), 

w/v\ = 4 sin2 (*/2) - 4sh*(s/2). 

The expressions for the displacements now take the form 

/3 = -2sh(r/2),y = - 2sh(s/2),a = 2* sin (z/2),w= ±2VR sin (2/2) 

^ / \/r» -rr2
 / Tr2 \ *(p«±2Ffl*sin («/2))-gr 

«*.« = COO (2 - F/j /F^e 
- (l/2)C(z)(2 - VR/VL) e 

(8-8) , . „ , W o -.2 , „2 2 2 1/2 •(p«±27iî*.in (*/2))-«r 

Vp,q = + tC(*)(2 - VR/VT)(1 - VR/VL) e 
l O YV Wl T/2 / T / V / 2 *(P*±2V*'*to <«/2))-fl» 

+ 2iC(s)(l - Fie/FL) e 
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where C{z) is an arbitrary function of z. Taking this to be unity and 
integrating with respect to z between 0 and 2ir we obtain a type of 
influence displacement, the values of uPfo and vPto being 

uPt0 = (1/2) {Vl/Vl) (2 - vl/V2
T)[72p(2VRt) + Œ2p(2VRt)l 

*P.O = (Y2H/VI)(1 - V2
R/vl)1/2[E2p(2VRt) - iJ2P(2VRt)]f 

where 
1 r 2 T 

J2P(x) = — I cos (pd ± x sin 6/2)d6 = J2p(-\- x)} 
2w J o 
i r2r 

E2p(x) = — I sin (pd ± x sin $/2)d$ = £2 p( + x). 
2w J o 

/v(#) is the Bessel function of order v when i; is an integer and Ev(x) 
is Weber's function. When x is large and positive the estimates given 
in Watson's Bessel functions15 are 

/ 2v + 1 \ 
Jv(x) ^ (lTX/2)~1/2 COS ( # 7T J, 

/ 2fl + 1 \ 
•Ev(ff) ~ (wx/2)~1/2 sin ( x 7r J. 

I t should be noticed that E2p(0)=0, 72 p(0)=0, £ ^ 0 , 70(0) = 1. An 
initial displacement of the lattice point (0, 0) leaves no residue at 
any surface point as /—> oo. 

A method of finding an estimate óf Ev(x) when both x and v are 
large is indicated in Watson's Bessel functions. 
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