
MATHEMATICAL QUESTIONS IN SEISMOLOGY 

C. F. RICHTER 

Seismologists, like mathematicians, are accustomed to dividing 
their subject into a pure and an applied branch. The desirability of 
such division is underlined by the manner in which non-seismologists 
frequently approach the subject. I t is too often taken for granted 
that, because an earthquake is a motion of the ground, seismology 
must be chiefly concerned with the detailed analysis of that motion 
for its own sake. Such analysis is important in the engineering section 
of applied seismology; but it is unrepresentative of seismology as a 
whole, which deals largely with more remote problems: the causative 
mechanism of earthquakes, the distribution of their origins geo­
graphically and in depth, or the structure and physical condition of 
the interior of the earth. 

Engineering applications are out of bounds for the present speaker. 
Briefly, they refer to the design of earthquake-resistant (not "earth­
quake-proof") structures. The problems differ from those of most 
structural engineering in being dynamical, not statical; buildings, 
bridges, and other structures must be designed with reference to their 
behavior when in violent vibratory motion. Further, horizontal forces 
must be considered more explicitly than is done in ordinary design, 
where the chief load forces, due to gravity, are vertical. Problems of 
principle are few; but the mechanical characteristics of large struc­
tures are only less complex than the motion of the ground in an earth­
quake. To arrive at solvable propositions it is usually necessary to 
idealize both sets of data to a degree which seriously limits the prac­
tical applicability. Consequently, progress has depended heavily on 
empirical investigation of the behavior of models on a shaking-table. 

A very vocal offshoot of seismology is its application to geophysical 
prospecting—the investigation of subsurface structures by recording, 
with specially designed seismometers, the artificial earthquakes pro­
duced when explosives are detonated. Numerous books and periodi­
cals deal with the problems of "geophysics"—which, in the vocabu­
lary of the profession, means geophysical prospecting; a rather 
unwarranted restriction of the meaning of a necessary term, long in 
use with its proper significance as the physics of the earth. These 
problems present little of individual interest to the mathematician, 

An address delivered before the meeting of the Society in Berkeley, Calif., on April 
11, 1942 by invitation of the Program Committee; received by the editors June 29f 

1942. 

477 



478 C. F. RICHTER [July 

since nearly all are specializations of problems and methods long 
familiar in connection with earthquakes. As an example, consider an 
idealization of "the reflection method." An explosion is set off at or 
near the surface of the earth, at a carefully recorded time. At un­
known depth is a reflecting layer, of irregular form, which may be 
discontinuous in the mathematical sense. The arrival of elastic waves 
from the explosion, reflected at the named layer, is timed accurately 
at a number of points on the surface of the earth. Supposing the 
velocity known and constant, is the determination of arrival times 
at all points of a limited area (taken as plane) sufficient to determine 
the depth and form of the reflecting layer? More practically, what is 
the maximum information derivable from a limited number of obser­
vations? In practice, the explosions may be repeated at several differ­
ent points. 

An important division of seismology which as yet offers little hold 
to the mathematician is that dealing with the fundamental mecha­
nisms of earthquakes—the possible physical origin of stresses giving 
rise to earthquakes, the mechanism of the actual process of fracturing. 
These problems belong to the field which has lately taken the name 
of "tectonophysics" ; a section of the American Geophysical Union 
with that title was organized in 1939. This marks a movement to give 
greater precision, from the point of view of mathematical physics, to 
many of the concepts used in geology to describe the behavior of 
great masses of matter. The subject is being furthered by increasing 
experimental data on the physical properties of rocks and other ma­
terial under great pressure. A detailed discussion would involve al­
most the whole of geophysics, of which seismology is only a small 
part. Reference may be made to the general manuals in the bibli­
ography, and to the Transactions of the American Geophysical Union. 

Theoretical seismology, like other branches of physics, is readily 
characterized mathematically by the occurrence of certain funda­
mental differential equations, the theory of which is involved in 
nearly every problem. These occur in three principal sets : 

I. equations of motion of the recording instruments, 
II . equations of motion of elastic solid bodies, 

I I I . equations of propagation of elastic waves in the interior of the 
earth (usually assumed as spherical). 

The first are the simplest. The motion of a seismometer is a par­
ticular case of the forced oscillations of vibrating systems, the theory 
of which is classical and well worked out. In its simplest form, the 
seismometer equation is a linear ordinary differential equation of the 
second order, with constant coefficients. The nonhomogeneous part 
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represents the disturbance due to an earthquake. The homogeneous 
term of zero order determines the free period of oscillation of the 
seismometer pendulum, and that of first order then gives the damp­
ing, or rate of decrease of the free oscillation. Further complication 
occurs when the seismometer displacement, instead of being recorded 
directly, operates an electromagnetic system which actuates a re­
cording galvanometer. The free period and damping of the galva­
nometer then enter into the equations of motion of the coupled sys­
tem, which in complete form are of fourth order. Since the coefficients 
are still constant, the problem is theoretically solved; but the prac­
tical application may become difficult and laborious if the damping 
coefficients are large enough to approach their critical values. Devices 
for clarifying the problem or shortening the computations are much 
to be desired. 

Seismic waves are propagated through the whole earth ; systematic 
investigation employs the data of many hundreds of earthquakes, as 
recorded at seismological stations in all parts of the formerly civilized 
world. The observations are affected by all ordinary causes of error, 
so that statistical treatment is necessary to ensure valid conclusions. 
Harold Jeffreys, at Cambridge, has devoted much of his distinguished 
ability for many years to the mathematical problems of geophysics 
and seismology; the professional mathematician will find no better 
introduction to these problems than his volume The earth [2]. Jef­
freys' interest in the theory and technique of statistics as such has 
also appeared in many publications; in a recent volume [ l l ] he has 
presented a detailed account of his somewhat unorthodox views. 
Seismologists have observed with much interest the application to 
their specialty of these highly refined techniques, which are for the 
most part beyond the range of their critical judgment. Jeffreys' spe­
cific results are mostly in excellent agreement with those of others 
who have not used his methods. He has sometimes claimed a sur­
prisingly high degree of precision; but any difference of opinion on 
such points refers, not to the method of handling the data, but to the 
reliability of the observations as such. Others have attempted to 
reach the same objective by working so far as possible with original 
seismograms in preference to readings taken from them, and by se­
lecting the data used for further conclusions through detailed consid­
eration of each item, applying individual criteria not easily derived 
from a purely statistical treatment. Questions arise belonging not 
merely to statistics, but to the whole theory of scientific method. 
Reference may be made to Jeffreys' smaller volume [12], and to the 
excellent summary in Blake's paper [7]. 
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Seismological data have at least one statistical idiosyncrasy; the 
errors are not symmetrical. The fundamental datum is the time of 
arrival of the first of a long succession of elastic waves at the recording 
station. If this first motion is small it may be missed, and a later 
time used instead. Early times, on the other hand, can arise only 
from the normally fluctuating causes of error, except occasionally 
when a seismologist, anxious not to overlook the true beginning, has 
measured a small extraneous disturbance preceding it. 

The equations of set II are: 

fir (fi y iyi\ 
(1) p ^ = (X + M) grad © + MV2(w, V, W), 

dt2 

du dv dw 
(2) Xx = X© + 2M —, Yv = X© + 2ju — ; Zz = X© + 2/x , 

dx dy dz 

( du dv\ /dv dw\ / dw djn\ 

u, vy w are the cartesian components of displacement of any ele­
mentary particle from its equilibrium position, p is the density; X and 
ix are the Lamé constants of elasticity. ©, the dilatation, is an abbre­
viation for the divergence of the vector (w, v, w). Equation (1), which 
stands for three, is thus a vector equation; it suffices for the theory 
of motion of a homogeneous isotropic elastic solid of infinite extent, 
without boundaries or discontinuities. The remaining equations give 
the components of the stress tensor in terms of the derivatives of the 
displacements. These are called for whenever it is necessary to apply 
boundary conditions. 

Consider first the consequences of these classical equations. Gen­
eralizations and modifications will be cited later. The usual process 
of separating the displacement vector into two parts, one of which is 
irrotational, involves taking the divergence and the curl of equation 
(1) ; this yields the two wave equations: 

d2@ X + 2M 

(4) = V2©, 
df p 

(5) = - v2a, * r). 
dt2 p 

Here 2(£,r?,f) =curl (u,v,w). 
This process proves the possible existence of two types of elastic 

waves. In the first, displacements are purely compressional or dilata-
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tional, the displacement vector being in the direction of propagation 
of the wave. These are physically identical with sound waves. In the 
second type, displacement may be described as purely shearing, ir-
rotational, or equivoluminal, being transverse to the direction of 
propagation and consequently exhibiting the phenomena of polariza­
tion as in optics. Whether these transverse waves should be called 
sound waves is a matter of terminology. Both longitudinal and trans­
verse waves are observed in the earth. These are the only types of 
waves which can exist in an unlimited homogeneous isotropic elastic 
medium subject to equation (1). As soon as boundaries exist, however, 
other waves occur. 

The simplest waves due to a boundary are the surface waves found 
by Lord Rayleigh [13]. Let the medium be semi-infinite with a free 
bounding surface at the plane 2 = 0. Then a solution of (1) exists which 
contains a factor exp(az+ibx —id) where a, b, c are real. This repre­
sents a wave propagated in the direction of x with velocity c/b\ its 
amplitude decreases exponentially with increasing z if a is negative, 
so that on the positive side of the boundary the disturbance is prac­
tically confined to the vicinity of the free surface. The velocity c/b 
is determined by requiring the stress components (2) and (3) to van­
ish at the boundary 2 = 0. This leads to a cubic equation in c2/J2. This 
equation is obviously characteristically connected with the partial 
differential equation (1) ; an exact analysis of this type of relationship 
might be of much interest. 

Since the cubic equation is reached by squaring, some of its roots 
may be extraneous to the problem. One of the roots is always appro­
priate, and leads to the solution given by Rayleigh. The case when 
the other two roots are equal falls well within the admissible numeri­
cal range of the physical constants, so that with slightly different pos­
sible values these roots may be either both real or both complex. 
When both are complex, they represent a valid solution of the given 
equations and boundary conditions only if the amplitude becomes in­
finite for infinite z\ this is not of physical interest. When both roots are 
real, a must be taken as imaginary ; the solution is periodic and does not 
vanish at infinity. The velocities come out greater than those of the 
normal longitudinal and transverse waves represented by (4) and (5). 
This at first appears physically improbable. However, it readily ap­
pears that these solutions represent trains of plane longitudinal and 
transverse waves of the normal type and with the normal velocities, 
approaching the surface at specified angles ; the high apparent veloc­
ity in the x direction is due to these angles of emergence. The result 
then appears trivial ; it seems that the search for solutions satisfying 
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given conditions has led incidentally to a special case of another 
known solution. However, there is still a possible question: Does this 
mean physically that a disturbance below the plane free surface will 
actually produce, not merely the Rayleigh surface wave and the or­
dinary body waves with spherical wave front, but also these particu­
lar body waves with a different orientation? The same result was 
obtained by Somigliana [14] less directly, and has been applied by 
Caloi [15, 16] to explain certain observations of anomalously high 
velocities. To the present speaker it appears more probable that these 
observations have another explanation, and that the solutions in 
question correspond to no new physical phenomenon. The same case 
arises in the work of Jeans [26] to be cited presently. 

The Rayleigh wave is only the simplest type of wave dependent 
on a discontinuity. Most seismograms show large waves of the type 
whose theory is due to A. E. H. Love [17]. These exist primarily in 
the space between two discontinuities; in the most important case 
the upper of these is the surface of the earth, while the lower is the 
base of the continental rocks. Similar waves may exist without a 
discontinuity, if the physical constants change rapidly with depth 
[18, 19]. This shows that a complete theory, now lacking, of the 
propagation of elastic waves in a nonhomogeneous but isotropic me­
dium, would include several types which do not occur when the 
medium is homogeneous and unbounded. 

More general boundary conditions have been applied. Stoneley 
and others [20-25] have worked on the theory of waves associated 
with an internal interface, and on the effect of multiple layering. 
Jeans [26] has considered the general problem of free oscillations of 
a spherically symmetrical earth. Surface waves of Rayleigh and Love 
types, as well as others, appear as particular solutions; the general 
solution is not worked through. Lamb, Sezawa, Nakano and others 
[27-41 ] have developed the theory of generation of bodily and surface 
waves from an initial disturbance of given form ; this bears directly on 
the problem of earthquake causation. 

Earthquake surface waves show considerable dispersion. The sim­
ple Rayleigh theory gives no dispersion, the velocity being fixed; 
however, the velocity depends on the frequency for Love waves 
[17, 18] and for Rayleigh waves on the surface of a heterogeneous 
medium [42-49]. The observed dispersion differs regionally, and is 
evidence for regional differences in crustal structure [4, chap. X I I ] . 

A quite different problem of much importance in the interpretation 
of seismograms is the following: Plane waves, either longitudinal or 
transverse, are incident at a given angle on the plane boundary be-
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tween two media which differ in elastic constants and density. There 
are four derived plane waves; reflected longitudinal and transverse 
waves in the first medium, refracted longitudinal and transverse 
waves in the second medium. What is the ratio of the amplitude of 
each to that of the incident wave? 

This problem was solved by Knott [50 ], and, a little more directly, 
by Zoeppritz [51 ]. The solution takes the form of four linear homo­
geneous algebraic equations in the amplitudes of the five waves, there 
being two cases according as the incident wave is longitudinal or 
transverse. Unfortunately, the coefficients are complicated, contain­
ing physical constants and trigonometric functions of the angles. 
Computation is laborious, and has been carried out only for a limited 
range of assumptions which approximate the actual conditions met 
with in seismology [52-54]. Our information is incomplete as to 
maxima and minima of the various amplitudes as functions of the 
physical parameters, and even as to the occurrence of zeros and 
singularities. I t would appear that some of these questions might be 
dealt with directly from the equations of motion and the boundary 
conditions in differential form ; but this has not been done. 

On seismograms of earthquakes at distances between 100 and 1000 
kilometers, the direct longitudinal wave, P, is preceded by a longi­
tudinal wave Pn, refracted through the material beneath the con­
tinental layers in which most earthquakes originate. At that depth it 
travels so fast that it arrives ahead of the direct wave. Analogous 
waves refracted horizontally through subsurface layers are observed 
in geophysical prospecting. Simplified forms of the theory usually 
indicate that such a horizontally refracted wave should exist as a type 
of surface wave in the lower medium, but that it should carry only a 
small part of the incident energy. While the direct wave is in fact 
larger, the observed refracted wave is usually not so small as the sim­
ple theory suggests. More precise discussion, such as that of Jeffreys 
[55, 56; 57, pp. 219-220] and Muskat [58] still does not satisfactorily 
represent the observations. Alternative explanations have been 
looked for. Recently O. von Schmidt [59, 60 ] has succeeded in pro­
ducing essentially the same phenomenon in the laboratory. He em­
phasizes the analogy with the "head wave" in ballistics. A theory has 
been given by Joos and Teltow [61 ], but the subject is still incom­
pletely investigated. 

In practice, the equations of our set III are identical with the fun­
damental equations of geometrical optics. The dimensions of the earth 
and its larger structures are so vast compared with the wave lengths 
of bodily seismic waves (mostly of the order of ten kilometers) that 
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the observations can be discussed without much attention to phe­
nomena of interference or diffraction. The chief difference from geo­
metrical optics lies in the data, the more significant of which are 
determinations of time, whereas intensities and frequencies, though 
observed and used, are of only supplementary importance. 

The customary general statement is Fermat's "principle of least 
time" 

(6) Ô f ds/v = 0 

where the end points of the line integral are fixed during the variation. 
ds denotes the element of path, and v the velocity of propagation 
given as a function of position. The name is slightly misleading. Thus, 
when a shock originates within the earth and sends waves to a distant 
surface point, there are two principal paths of singly reflected waves 
satisfying the variation principle. Of these the more obvious and 
familiar, reflected nearly midway, corresponds to a maximum of the 
integral. The other, representing a minimum time, is reflected com­
paratively near the source ; it is observed chiefly in earthquakes origi­
nating at great depth. Jeffreys [73, p. 560] has pointed out that in 
general seismic waves corresponding to maximum times are less sharp 
and well defined on the seismograms than those with minimum times. 

Attention is called to the differential equation associated with the 
variation principle, and named by Bruns the equation of the "eiko-
nal." For a spherically symmetrical earth it takes the form 

(7) (dt/dr)2 + (1/r2) (dt/dey = 1/v2 

where r, 0, 0 are polar coordinates with origin at the center and polar 
axis through the source of the earthquake. Since the velocity v is 
independent of <j>, that coordinate drops out. t is the time of propaga­
tion, not along a fixed ray, but always along that ray which forms the 
path of least time from the source to the point (r, 0, </>). 

This general equation can be made the basis for a complete discus­
sion of the geometrical optics of seismology. More customarily, the 
wanted information is derived from a special consequence, namely 
Snell's law of refraction in its polar form, which states that along a 
given ray 

(8) (r sin i)/v = const. = r8/v8. 

Here i is the angle between the radius vector and the tangent to the 
ray. Except at the boundary of the core of the earth, velocity in-
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creases with depth (since the elasticity increases more rapidly than 
the density, which alone would give the opposite effect). Seismic rays 
are convex toward the center of the earth, and each ray has a mini­
mum radius vector r8 corresponding to i = 90°; the velocity at this 
point on the ray is v8. 

The initial problem is to determine the velocity distribution within 
the earth. The observed times at seismological stations at varying 
angular distances from the source give / as a function of 6 for r = R, the 
radius of the earth. The assumption of spherical symmetry is justified 
by the satisfactory agreement with all observations of tables giving / 
as a function of 6 alone. The determination of v(r) from t(d) involves a 
Fredholm integral equation, of the type first solved by Abel [62, 63]. 
The method developed by Wiechert [64] and Herglotz [65], im­
proved by Bateman [66], leads to integrals which are readily evalu­
ated graphically or with a computing machine. The essential equa­
tions are : 

(9) cosh q(x, 6) = t'(x)/t'(6), 

R i r6 

(10) log — = — I q(x, 6)dx, 
f H TT J 0 

(11) Ts = * / ( « ) . 

From the given t(0) one proceeds to t'(6) and thence to v8 as a func­
tion of r8, identical with v(r). General relations between the deriva­
tives and singularities of v(r) and t(6) are of importance; few have 
been worked out.1 A peculiar singularity is involved, which occurs in 
all similar problems. To state it simply, consider a source of disturb­
ance at # = 0, 3/ = 0, 2= —A, the velocity v being a function of z only. 
Let the arrival time on the x-axis be given as t(x). Then t'(x) = 0 for 
x = 0, so long as h is different from zero; but if h = 0 then t'(x) = 1/v 
for x = 0. Again, if h is not zero, t"(x) = 0 for x = 0 ; but it is not easily 
seen what the general behavior of the second derivative will be if 
h = 0. This apparently artificial problem took on a physical signifi­
cance in the following way [9, IV; 67, 68] : There is a well observed 
type of seismic wave which originates as a transverse wave, continues 
along a short path in the presumably liquid core of the earth as a 
longitudinal wave, and then emerges from the core as a transverse 
wave, in which form it reaches the recording stations. Shortening dis-

1 The speaker gave the result by Gutenberg and Richter [9, I I ] for dvs/dr8 in 
terms of / ' and q. Subsequent discussion has made possible an adequate discussion 
of the higher derivatives, to be published in the near future. Correction to [9, II , 
p. 304 ] : dv8/dr8 = 0 for / = x , not for / infinite. 
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tance between earthquake source and observing station shortens the 
path in the core, until it finally vanishes and the wave in question 
ceases to exist. Let t(6) now represent the times of arrival at the 
earth's surface; what should be the behavior of t"(6) at the minimum 
distance? The question bears on the expected amplitude of the given 
wave at this minimum distance. Considering the path in the core 
leads to the same singularity as in the simple plane case just described. 
Dix [69] has shown that the second derivative should vanish except 
for certain highly singular velocity distributions. 

Some large scale diffraction phenomena occur. The core of the 
earth, which has a relatively sharp boundary at a depth of 2900 
kilometers, does not transmit transverse waves; and at the boundary 
the velocity of longitudinal waves drops from about 13 km/sec out­
side to about 8 km/sec inside; this is the only noteworthy exception 
to the rule of increasing velocity with depth. There results a shadow 
zone for both types of waves, within which disturbances diffracted 
around the core are found on the seismograms of sensitive instru­
ments recording great earthquakes. Further, there is an angle of 
minimum deviation for the principal longitudinal waves refracted 
through the core ; this angle determines the outer limit of the shadow 
zone, which accordingly exhibits the phenomenon known in optics as 
a caustic, with a focussing effect producing large amplitudes in a 
small range of 6. Waves apparently continuous with the others are 
observed irregularly within the outer limit. For years these were at­
tributed to diffraction associated with the caustic—more precisely, 
with its continuation as a caustic surface within the earth; but no 
exact theory was attempted until quite recently [70]. Meanwhile, it 
has appeared that the observations are better explained by the exist­
ence of an "inner" core, the boundary of which need not be very sharp 
[71-73]. 

Many generalizations have been aimed at extending the applicabil­
ity of the theory. Thus, we have handled "optical" seismology assum­
ing a spherical earth. The effects of ellipticity are definitely observa­
ble; indeed, it has been suggested [74, p. 231] that seismological data 
would suffice for a rough determination of the oblateness of the ter­
restrial spheroid. A good beginning has been made in these problems 
[75-79], which fall into three evident stages: a figure-of-the-earth 
problem to indicate the probable variation in ellipticity with depth for 
the homogeneous shells constituting the earth; a solution for the 
propagation of elastic waves through such a body; and a detailed 
examination of this solution for new phenomena of reflection and re­
fraction not possible with spherical symmetry. 
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Love [17] and later writers have investigated the effect of gravity 
on the propagation of seismic waves ; this proves to be entirely negli­
gible. 

A difficult series of papers by Uller [80 ] offers a generalization of 
the wave concept as such, with seismological applications. Further 
critical discussion is needed. Summaries have been given by Macel-
wane [3, pp. 110-114) and Gutenberg [l, vol. 4, pp. 136-146]. 

Some extension of theory is required to account for the frequent 
observation that the prevailing periods of all types of seismic waves 
increase with distance. This cannot wholly be due to the normal 
spreading of an impulsive disturbance with filtering out of the shorter 
periods. For surface waves, where very long paths are observable, 
often up to several complete circuits of the earth, such an explanation 
can be ruled out. Surface waves show dispersion, the theory showing 
that velocity should vary with period; but this cannot account for 
the increase with distance of the period of a clearly identifiable wave 
group. For body waves the corresponding evidence is less conclusive, 
but convincing to anyone familiar with the data. The required effect 
will be given by some type of viscosity, or internal friction. Sezawa 
[81-83] has set up a theory which partially covers the case; the 
problem has been treated by Jeffreys [84, 85; 2, pp. 265-266], and by 
Gutenberg and Schlechtweg [86]. 

Confusion, especially when there is insistence on carrying on the 
discussion in apparently non-mathematical terms, arises from the use 
of such terms as "viscosity" and "strength" in different senses. Defi­
nition of viscosity for solids is difficult, depending on the form of the 
hypothetically modified equations of elasticity. The property most 
closely corresponding to the well known and well defined viscosity of 
fluids is commonly termed internal friction; the entirely different 
quantity which measures the slow yielding of solids under long-con­
tinued pressure is more usually termed viscosity. For discussion see 
Gutenberg [4, chap. XV] . 

The classical theory of elasticity requires the components of stress 
to be linear functions of those of strain. This first-order approximation 
is being extended by second-order theories. To this end Murnaghan's 
theory of finite strain [87] may be applied, assuming "constants" to 
be modified in a medium under strain, the case of most importance 
being that of hydrostatic pressure. On this basis Birch [89] has found 
close agreement between observed and calculated seismic wave veloci­
ties in the earth, and has shown [88] that initial hydrostatic pressure 
does not affect the laws of elastic wave propagation. Biot [90 ] has 
developed a general second-order theory, and has recently [91 ] ap-



488 C. F. RICHTER [July 

plied it to the general problem of propagation of elastic waves when 
there is initial stress; hydrostatic pressure produces no effect, but 
other types of initial stress may lead, among other effects, to a cou­
pling between longitudinal and transverse waves. The non-effective­
ness of hydrostatic pressure restricts the applicability of the old 
results of Rudzki [92], who assumed the earth to be aeolotropic, with 
different wave velocities horizontally and vertically. He arrived at 
the same coupling of longitudinal and transverse waves; but his 
theory gave no ready means of estimating the magnitude of the sup­
posed seismological effect. 

Mathematical seismology is much in need of synthesis. Techniques 
to solve particular problems have been imported from other applica­
tions or from pure mathematics, without much examination of their 
relation to each other and to the general fields in which they originate. 
Hence the implications of such special results as the cubic equation 
characterizing the Rayleigh wave, or the Abelian integral equation in 
the velocity problem, are often imperfectly understood by those who 
are constantly working with them. Not rarely this leads to difficulties 
when the problems are to be generalized. Much spade work remains 
in exploration of the various subjects suggested by the natural articu­
lation of the data; but the ultimate outcome should be a comprehen­
sive treatment akin to the great treatises on optics and acoustics. To 
repeat—the contents of those treatises have only a limited applica­
tion in seismology, not merely because of the complication in com­
bining the mathematical characteristics of optics and acoustics, but 
largely because the principal observed data are not frequencies and 
intensities, but actual times of propagation of seismic waves. 

I t would be ungracious to close without reference to the interesting 
address by Professor Cairns [ó], who has since been a welcome and 
stimulating visitor at the Pasadena laboratory. 

In preparing for publication, much use has been made of the valua­
ble summary by Blake [7] ; his discussion and references cover a num­
ber of points not included here. The paper by Byerly [8] contains 
further supplementary material. 

The following bibliography is selected for general usefulness or for 
mathematical interest. Many important papers, particularly those 
reporting observations, are omitted. Less than justice is done to the 
contributions by Jeffreys; more will be found in the Geophysical 
Supplement to the Monthly Notices of the Royal Astronomical 
Society. (Each volume of the Supplement covers a number of years; 
dates given are those of publication.) Further papers by Sezawa or by 
Sezawa and Kanai, as well as by other Japanese authors, will be 
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found in the Bulletin of the Earthquake Research Institute of Tokyo 
Imperial University. Japanese papers often are of mathematical in­
terest only, by reason either of initial assumptions too remote from 
physical fact, or of failure to carry the calculations far enough for 
comparison with observations. All those cited here are in English. 
Throughout the bibliography, the language of the title as given is 
that of the original paper. 
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