
A NOTE ON APPROXIMATION BY 
RATIONAL FUNCTIONS 

H. KOBER 

The theory of the approximation by rational functions on point 
sets E of the js-plane (z = x+iy) has been summarized by J. L. Walsh1 

who himself has proved a great number of important theorems some 
of which are fundamental. The results concern both the case when E 
is bounded and when E extends to infinity. 

In the present note a Z^-theory (0<p< oo) will be given for the 
following point sets extending to infinity: 

A. The real axis — oo <x < oo, y — 0. 
B. The half-plane — oo < # < oo, 0 < j < oo. 
The only poles of the approximating functions are to lie at pre-

assigned points whose number will be required to be as small as pos­
sible.2 We shall make use of the theory of the class fgp the funda­
mental results of which are due to E. Hille and J. D. Tamarkin;3 

&P is the set of functions F(z) which, for 0<y< oo, are regular and 
satisfy the inequality 

ƒ 00 

\F(x+ iy)\*>dx<> Mp or | F(z) | ^ M 
- 0 0 

for 0<p< oo or p = oo, respectively, where M depends on F and p 
only. By \f(x+iy) \ p we denote 

) I/P 

or ess. u.b. | f(x + iy) \ 

for 0 < £ < o o or £ = o o , respectively, and by a and 13 two arbitrarily 
fixed points in the upper or lower half-plane, respectively. We obtain 
the following results:4 

THEOREM 1. Let 0 < p < oo and F(t)GLP( — oo , co)yletcbean integer 
greater than p~x and rk(z) = (a-z)k(z-l3)-c-k [& = 0, ± 1 , ± 2 , • • • ]. 

Received by the editors June 26, 1942. 
1 Interpolation and approximation by rational functions in the complex domain, 

Amer. Math. Soc. Colloquium Publications, vol. 20, 1935. 
2 Compare Walsh, loc. cit., for example, approximation by polynomials. 
3 Fund. Math. vol. 25 (1935) pp. 329-352, 1 ^P< <*>. For 0 < £ < 1 see T. Kawata, 

Jap. J. Math. vol. 13 (1936) pp. 421-430. 
4 The case p = oo of each of the results is a special case of Theorem 16, J. L. Walsh, 

chap. 2. 
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Then there are finite linear combinations sn(z) of the rk(z) such that 

I F(t) - sn{t)\v = ( ƒ \F{t) - sn(i)\*it\ P - > 0 as n^ oo. 

THEOREM 2. (a) Let 0<p<<x> and F{t)^Lv{ — oo, oo). A necessary 
and sufficient condition f or the existence of rational f unctions sn(z) such 
that their only poles lie in a single point of the lower half-plane and that 
| F(t) —sn(t) | p—»0 as n—> oo is that F(t) is equivalent to the limit-function 
of an element F(z) of $p. 

(b) When the latter condition is satisfied then there are rational func­
tions sn(z), with their only poles at z=/3, such that, uniformly in the 
half-plane 0<;y < oo, 

F(x + iy) — sn(x + iy) 0 as n • 

By a well known result5 concerning § p , 2(b) is a consequence of 2(a). 
We start with giving explicit approximating functions in some spe­

cial cases of problem (A), taking fi = â. 
THEOREM 1/. Let F ( 0 6 £ i ( - ° o , °°) or F(t)EL2(- <*>, <*>), or let 

F(t) be continuous everywhere, including infinity.6 Let c = 2, 1, 0 for 
p = 1, 2, oo, respectively, and let 

Sn{z) = 2 , ak- — 
* _ » (Z ~ â)k+c 

Then 

i(a — â) 
ak = 

2TT J _M (a — 

(* - â)k+°-1 

( « - / ) fc+i 
<fr. 

F(t) 

F(t) 

1 

1 

iv+ 1 
AT 

Z *»(') 
n=0 

Z 
n==0 

CO 

*n(0 or 
l 

U.l 
- c c < 

b. 

F(*) - sN{t) 

1 

or 

*(') -
N+ 1 ~„ 

Z *.(<) 

respectively, tends to zero as iV—> oo. When F(t) is continuous everywhere, 
including infinity, and of bounded variation in ( — oo, oo ) then the sn(t) 
converge to F(t) uniformly in ( — oo, oo ). 

I t will suffice to take a=i, the general case being deduced from 
this one by the substitution / = JR(a) +tf$(a). Let F(t)Ç±L2(- *>, <*>), 
* = tan (1/2)* [ - T T ^ ^ T T ] , and ƒ(*) = 2 ( l + e ^ ) " 1 F ( t a n t?/2). Then 
F(t)^L2(— oo, oo ) implies t h a t / ( # ) £ L 2 ( — 7r, 7T), and vice versa. Now 

5 Since sn(t)ÇzLp, we have Sn(z)E^>p, F(z) —sn(3)E:&>, and we can apply the Hille-
Tamarkin Theorem 2.1 (iii), part 2, loc. cit. * 

6 A function F(t) is said to be continuous at infinity wheil its limits, as /—> ± oo, 
both exist and are finite and equal. 
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the Fourier series ^bne
inû, belonging to ƒ(#), converges to ƒ(#) in the 

mean square over (— wt TT). We have e™ = (i — t)(i+t)-1, ( 1 / 2 ) ( 1 + ^ ) 
= i(i+t)~1; taking an = ibn, we arrive finally at the required result. In 
a similar way we prove the remaining assertions of the theorem. 
We note7 that the sequence { (2i ir ) - l l 2 (a-â) l i 2 (a- t ) n ( t -â)~ n - 1} 
[n = 0, ± 1 , ± 2 , • • • ] is a complete orthogonal and normal system 
with respect to Lp(—oo, co) [l<p< oo]. 

To prove Theorem 1, we have to show that, given e>0 , there is a 
finite linear combination sn(z) of the ru(z) such that | F{t) — sn(t) \ p< e. 
We can find a positive number b and a function ƒ(/) such that ƒ(/) 
is zero for /\ ^b and continuous for — b^t^b, and that 

£ 
f (e/2)* for p > 1 

1 W y w ' " ' l ( l / 2 ) € ' for p < 1. 

The function g(/) = (t—fi)cf(t) is continuous everywhere, including in­
finity. From results of Walsh8 we deduce the existence of functions 

» (a - z\k 

°n(z) = Zu ak,n[ ) , » = 0 , 1, 2 , 
fc—n \Z — fi/ 

| g(0 —<Tn{t) | oo—̂0 as ^—> co. Taking sn(z) = (z—($)-e<rn(z), we have 

/(')-*»(0 = (* ~ 0)c 

p . . . . . ,Pr" ^ ^ *(0 - *»(/) :ƒ.: l ' - 0 
The right side tends to zero as n—> oo. Therefore, for some n, we have 
| / ( 0 - * » ( 0 | ? < 8 , | ^ ( / ) - 5 n ( / ) | ^ < € ^ which completes the proof. 

To prove Theorem 2(a), we need some lemmas. 

LEMMA l.9 Let <p(w) belong to the Riesz class Hp [0<p< oo ], that 
is to say, let <p(w) be regular for \w\ < 1 and satisfy the inequality 

a ir \ l / p 

I <p(re»)\*d&\ S M, 0 < r < 1, 
where M is independent of r.10 Then there are polynomials Pn(w) 
[w = l, 2, • • • ] swcfe ^a£ | |^(^)~Pn(re i ê)\ \p—»0 as w—>co, uniformly 

for O O ^ l . 
7 Cf. H. Kober, a forthcoming paper in Quart. J. Math. Oxford Ser. 1943. 
8 Walsh, loc. cit. chap. 2, Theorem 16. It can also be deduced from Theorem 1' 

of this paper. 
9 For p— oo the result holds if and only if <f)(eiâ) is continuous for — ir^ê^ir. 

Cf. Walsh, loc. cit., and Trans. Amer. Math. Soc. vol. 26 (1924) pp. 155-170. 
10 F . Riesz, Math. Zeit. vol. 18 (1923) pp. 87-95. 
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By well known properties of the class HP1 it will suffice to take 
r = l. Let (p(w) =%2anw

n. Since, for any fixed R [0<R<1] and uni­
formly with reepect t o # [ — 7r^t^^7r], the series ^anR

nein* converges 
to <p(Reiû), the result can be deduced by means of the well known 
equation \\(p(e^)-ip(re^)\\p-^0 [ r -» l ] . 

LEMMA 2. Let w = (i — z)(i+z)~1. The f unction F(z) belongs to &p if, 
and only if, the function (1 +w)~21p<p(w) belongs to HP1 where <p(w) 

Hille and Tamarkin have proved11 that the condition <p(w) C0.Hp is 
necessary. To define the function (l+w)~2/p, we cut the w-plane 
along the negative real axis from w= — 1 to w= — oo. When F(z) 
belongs to &p then its limit function F{t) [;y-->0, x = t] belongs 
to Lp(-oo, oo), therefore ( l + é ^ ) - 2 / 2 V ( ^ ) to Lp(-w, w). Let 
\f/(w) = (l+w)~2,p<p(w),and 0<q<p/3. By Holder's theorem, we have 

ƒ * / /» TT \qlp/ f * d& \ l - « / P 

I Mrtf») \qdû** I <p(re**) \p) -, ; J 
The right side is uniformly bounded for 0 < r < l . Hence \l/(w)(£Hq; 
its limit-function yp(eiû), however, belongs to LP( — TT, IT) ; hence12 

\p(w)(E:Hp- Conversely, let \p(w)E:Hp. From a result due to R. M. 
Gabriel13 we deduce that 

f | >P{w) \p | dw I ^ 2 J | ^ ( ^ ) |*<W, 

where C is any circle strictly interior to the unit circle Y [\w\ = 1 ] . 
By Fatou's theorem, this inequality holds when C is a circle touch­
ing r from within at w——\. Finally, by the transformation 
w = (i - z)(i + z)-\ w e deduce that | F(x +iy)\p£ 22>*||^(e<*)||p 

[0<y< oo ] which proves the lemma. In a similar way we can show 
that when F(z)E$P and F(t)GLq(- oo, » ) [ 0 < # ^ o o ] jftén 

LEMMA 3. Let 0<p^ oo, letfn(z)G$P [n = l, 2, • • • ], and letfn(t) 
be the limit-function of fn(z). Let F(t) be defined in ( — oo, oo) and 
I <F(0 ~/»(01 P - ^ ^ w—> °° • ^Aew F(/) is equivalent to the limit-function 
of an element f{z) of $p. 

11 Loc. cit. Lemma 2.5. 
12 V. Smirnoff, C. R. Acad. Sci. Paris vol. 188 (1929) pp. 131-133. A. Zygmund, 

Trigonometrical series, Warsaw, 1935, 7.56(iv). 
13 J. London Math. Soc. vol. 5 (1930) pp. 129-131. Cf. Hille-Tamarkin, Lemmas 

2.1 and 2.5. 
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The proof for 0 <p < oo is entirely different from that for 1 Sp ^ oo, 
given in a former paper.14 Let 0<p<l and p > 0 , and let <K*) €:§*>• 
Then, for p^y<oot we have \</>(z)\ g {{\ / 2)TT p)~1^ |</>(/) |P.15 Since 
\fn(t)— /»(/)|p—>0 [w >#—><» ], taking 4>(z) =fm(z)-fn(z) we can de­
duce that the sequence {fn(z)} converges to an analytic function ƒ (2), 
uniformly for — 00 <x< &, p<y< 00. Since there is a constant K, in­
dependent of n, such that \fn(t)\p^K, we have \fn(x+iy)\p^K, 
and we can deduce that \f(x+iy)\pSK for any positive 3/. Hence 
f(z)Çz&v. We are left to show that ƒ(/), the limit-function 
of ƒ(2), is equivalent to F{t) in (—<», °o). Given e>0 , we have 
I (fm(x) — /N(X)\1< É / 1 2 for m^Nf fixing iV in a suitable way, and 
|M*+*3>) -ƒ*(*) | ; ^ e/6 for 0 <y^ 5 = 5(€, N). Hence 

I ƒ«(* + iy) - fm{%) \ls\ fm(x + iy) - fN(x + iy) \v
p 

+ I fm(x) - fN(x) \l + I fN(x + iy) - fN(x) |p ^ e/3 

for m^NjO<y ^ 5, since the first term on the right side is not greater 
than the second term. Given M>0, we have 

/

M /» M 

I ƒ(*) - /mO) N * ^ I I f(x + iy) - fm(x + iy) \*dx 
-M J -M 

+ \f(x+ iy) - f(x) |p + I fm(x + iy) - fm(x) |*. 
The right side is smaller than e for m ^m0(e) , as we see fixing a suit­
able value for y. Consequent ly /^ ) = F(x) almost everywhere in any 
finite interval ( — M> M) and, therefore, in (—00, <*>). With a slight 
alteration, the proof holds for 1 ^p < 00. 

By the lemma, the necessity of the condition in Theorem 2(a) is 
evident. For sn(t) belongs to Lp{ — 00, 00), therefore sn(z) to &p. To 
prove its sufficiency, we take first Kp < <*>. By Theorem 1, there are 
rational functions Rn(z) such that their only poles lie at z = j3 and z = ]8 
and that | /?(*) — i?n(0|p~^0 a s n-^co. Taking 2?»(s) =s»(s)+(r„0e)» 
where the rational functions s'n and an vanish at infinity and have no 
poles other than at z = fi or s=j8, respectively, we have sn(z)Ç.$p$ 

(rw(s)G§p. Denoting by §ƒ the Hubert operator 

1 r °° ƒ(*)* 
< p / = _ P F ^ Z _ , 

7T J -oo ^ ~ X 

we have | # / | p^Cpl / l* , $F = iF(x) and $$» = &»(#)> § 0 ^ = - ^ „ ( x ) . 1 4 

14 H. Kober, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 421-427. 
16 This can be shown by means of the inequality (73), M. Plancherel and G. Polya, 

Comment. Math. Helv. vol. 10 (1937-1938) pp. 110-163. 
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Hence 

2 j F(t) - sn{t) \p = | ÏF + §F - (iRn + §Rn) \p 

S \F-Rn\p + \$(F-Rn)\p^ (Cp+ 1)\F-Rn\p 

which tends to zero as n—> oo. Hence | F(t) — sn(t) \ p—>0 as n—> oo. 
L e t n o w O < £ ^ l and F(Z)Ç:!QP, let/3 = — i, z = i(l — w)(l+w)~1 and 

<p(ze>) = JP(S). Given e>0 , from the Lemmas 2 and 1 we infer the exist­
ence of a polynomial P(z) such that 

-7T 

<p(ew)(l + ^*) -2 /P - p ( ^ ) \Pd# ^ €/4# 

Hence 

F(/) - (1 + e*»)2^P( I * ^ €/2f 

- c o I \i + t/\ 

where t = tan a/2. Let b be an integer, p~1<b^l-\rp~1. Then the ra­
tional function x(s) = (2i)6(i+^)~&P{ (i — 3)(i+js) -1} has no singular­
ity except at z=—i. Since x W G ^ ^ - 0 0 » oo), we have | X W | P 
= C<oo, Now the function (l+eiû)2,p~b can be approximated by 
polynomials Qm{e%û) [m —I, 2, • • • ], uniformly for — TT^Û^TT. 

Hence, for some m, we have 

f 1(1 + e^y^p(^) - x(t)Qm(--~) 
J -00 I \t + t / \l + t/ 

p 

dt < e/2. 

Thus | F{t) -x(t)Qm{{i-t){i+t)-1} \ p< e1^. This completes the proof 
which, slightly altered, holds for 1 <p ^ 2. 

For /> = 1, 2, oo, we obtain explicit approximating functions by 
Theorem 1' and by the lemma: 

Let l^p^ oo and F(z)(E.&P, let a be an integer and a^O for p = l, 
0,^2 for p = oo , a ̂  1 otherwise ; then 

L (a - t)n 

F(t) — dt = 0 fom = 0, 1, 2, 

THEOREM 2'. Let p = 2, I, or oo awd c = l, 2, or 0, respectively; let 
F{z) G ^ p # tó JF(/), JAe limit-function of F(z), be continuous everywhere 
including infinity when p = oo. Let sn(z) be defined by 

- 0 5 - z ) * 1 » > ( 0 - * ) * p = 1 ' l 
>_. ak I ƒ> = 2 I or y. y. ak , 
to (z-p)k+c » + 1 M to (z - P)k+° U = » J ' 
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where 

a, = i - ƒ?(*) - ^ — (ft. 
-co (0-/)fc+1 

Then, uniformly for O^y < oo , | ^(x+^y) — Sn(#+^y) | v~*0 as n~* °° • 

Applying Theorem 2' to the components of g(z) = (1/2)^(1 — s) 
r((l/2)s)7r~s/2£*(s),16 where f(s) is the Riemann zeta-function and 
z = i(l— 2s), we can deduce the following corollary: 

Let0^a< oo, q = i(l— a), r=i(l+a), let 

00 Z lOO 

â(x) = £ e-"2"; bo = t?(l)/2 + (1 - a/2) j v'i*â'(v)dv; 

&=0 ft! 

&n = ( - i f ƒ V V « { £ n 0 ) ( l o g ! 0 / 2 « ( a ^ L n ^ a O g w ) ^ } * , 

» > 0. 
Then the series 

converges to g(z) uniformly f or — oo <x< oo, —a^y^-a, while it does 
not converge whenever \y\ >a. 

The series takes a simple form for a — 0 (critical line). 

THE UNIVERSITY, 
EDGBASTON, BIRMINGHAM, ENGLAND 

36 In fact to the function g\(z— ia)E:&^ where g{z)=*g\{z)-\-g\(—z), gi(z) 
= ((1 +s2)/16)fr {#(t) - 1 } tV-*Wt- (1/4) - (is/4) {ê{\) - 1 j . 


