A NOTE ON APPROXIMATION BY
RATIONAL FUNCTIONS

H. KOBER

The theory of the approximation by rational functions on point
sets E of the z-plane (z=x-14y) has been summarized by J. L. Walsh!
who himself has proved a great number of important theorems some
of which are fundamental. The results concern both the case when E
is bounded and when E extends to infinity.

In the present note a L,-theory (0<p < ») will be given for the
following point sets extending to infinity:

A. Thereal axis — o <x < »,y=0.

B. The half-plane — o <x< w0, 0<y < w.

The only poles of the approximating functions are to lie at pre-
assigned points whose number will be required to be as small as pos-
sible.? We shall make use of the theory of the class , the funda-
mental results of which are due to E. Hille and J. D. Tamarkin;?
Oy is the set of functions F(z) which, for 0 <y < «, are regular and
satisfy the inequality

f |F(s+ iy) |7ds < M» or |F@)| <M
for 0<p< o or p= x, respectively, where M depends on F and p
only. By lf(x+'iy) ] » we denote

0 i/p
(f | f(x + i) Ipdx‘) or ess. uw.b. |f(x-|— iy)l

—0 <zl o

for 0<p < » or p= o, respectively, and by a and 8 two arbitrarily
fixed points in the upper or lower half-plane, respectively. We obtain
the following results:*

THEOREM 1. Let 0<p < o and F(t) EL,(— », ), let c be an integer
greater than p=' and ry(2) = (a—2g)*(z—B)~°* [k=0, +1, +£2, - - - ].
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! Imterpolation and approximation by rational functions in the complex domain,
Amer. Math. Soc. Colloquium Publications, vol. 20, 1935.

2 Compare Walsh, loc. cit., for example, approximation by polynomials.

3 Fund. Math. vol. 25 (1935) pp. 329-352, 1 £p < ». For 0<p <1 see T. Kawata,
Jap. J. Math. vol. 13 (1936) pp. 421-430.

¢ The case p= » of each of the results is a special case of Theorem 16, J. L. Walsh,
chap. 2.
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Then there are finite linear combinations s,(2) of the ri(2) such that
© 1/p
|F(t)—sn(t)|p=<f |F(t) ——s,,(t)lpdt> —0 as n—> ©,

THEOREM 2. (a) Let 0<p < 0 and F{t)EL,(— ©, ©). 4 necessary
and sufficient condition for the existence of rational functions s.(z) such
that their only poles lie in a single point of the lower half-plane and that
| F(t) —sa.(2) } »—0 as n— » g5 that F(t) is equivalent to the limit-function
of an element F(z) of D,.

(b) When the latter condition is salisfied then there are rattonal func-
tions s,(2), with their only poles at z=0, such that, uniformly in the
half-plane 0 <y < o,

| F(x 4+ iy) — sa(x+ iy) |,— 0 as n— ®_

By a well known result® concerning 9,, 2(b) is a consequence of 2(a).

We start with giving explicit approximating functions in some spe-
cial cases of problem (A), taking =a.

TuEOREM 1’. Let F(t) ELi(— o, ©) or F()ELy(— o, «), or let
F(t) be continuous everywhere, including infinity.® Let ¢=2, 1, 0 for
p=1, 2, o, respectively, and let

sa(2) = Zak (a0 — 2)* o — ’L(Ot—-a)f F()St_ﬂl B

= - ) ot £)
Then
'F(t) -5 1 nE—-O s,,(t) or lF(t) — sn() |2 or
N 1
F(t) — e EO su(f) ] _3.2;“ F(f) et ”Zzo sa(®) |,

respectively, tends to zero as N— « . When F(8) is continuous everywhere,
sncluding infinity, and of bounded variation in (— «, «) then the s,(2)
converge to F(t) uniformly in (— o, ),

It will suffice to take a =1, the general case being deduced from
this one by the substitution =% () +4'J(a). Let F(t) EL:(— », «),
t=tan (1/2)¢ [—w<9=m], and (@) =2(1+¢?)"'F(tan ¥/2). Then
F(t)EL:(— 0, ) implies that f() € L,(—m, ), and vice versa. Now

5 Since sa(f) € Lp, we have s.(2) € Op, F(2) —s(2) € Pp, and we can apply the Hille-
Tamarkin Theorem 2.1 (iii), part 2, loc. cit. *

8 A function F(f) is said to be continuous at infinity whed its limits, as t— =+ «,
both exist and are finite and equal.
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the Fourier series Y b.¢™, belonging to (&%), converges to f(#) in the
mean square over (—m, 7). We have ¥ = (i —£)(i+£)"1, (1/2)(1+¢")
=1(s+14)"1; taking a, =1b,, we arrive finally at the required result. In
a similar way we prove the remaining assertions of the theorem.
We note’ that the sequence {(2im)~Y2(a—&)V2(a—t)"(t— &)~}
[#=0, +£1, +2, - - - ] is a complete orthogonal and normal system
with respect to L,(— o, o) [I<p< o]

To prove Theorem 1, we have to show that, given ¢>0, thereis a
finite linear combination s,(2) of the 7x(z) such that | F(t) —s,(2) | p< €
We can find a positive number b and a function f(¢) such that f(z)
is zero for |¢| Zb and continuous for —b<¢<b, and that

{(5/2)p for p>1

J Iro-solrass "= \W2er for psi.

The function g(¢) = (¢ —B)°f(¢) is continuous everywhere, including in-
finity. From results of Walsh® we deduce the existence of functions

” a — z\*
O'n(Z) = Z ak,,,(——) n=2012---,

jr—, z — ﬂ ’
Ig(t) —a,()) , »—0 as n— ., Taking s,(2) = (z—B)~¢.(2), we have
O=2OF oy - [~ 2

Iﬂo—%mﬁ=l

=8 I o |t =B
The right side tends to zero as #n— «. Therefore, for some #, we have

If(t) —sa(f) I r<a, l F(t) —s.(8) ,,’: < e? which completes the proof.
To prove Theorem 2(a), we need some lemmas.

LeMMA 1.° Let o(w) belong to the Riesz class H, [0<p< =], that
1s to say, let o(w) be regular for |'wl <1 and satisfy the inequality

T 1/p
Ilw(rei")n,, = (f l o(rei) !Pdé‘) =M, 0<r<i,
where M is independent of r.!® Then there are polynomials P,(w)
[n=1,2, - - - ] such that ||o(re”) — P, (ré”)| ,—0 as n— o, uniformiy
for 0<r=1.

7 Cf. H. Kober, a forthcoming paper in Quart. J. Math. Oxford Ser. 1943.

8 Walsh, loc. cit. chap. 2, Theorem 16. It can also be deduced from Theorem 1’
of this paper.

9 For p= o the result holds if and only if ¢(e?®) is continuous for —r I =
Cf. Walsh, loc. cit., and Trans. Amer. Math. Soc. vol. 26 (1924) pp. 155-170.

10 F. Riesz, Math. Zeit. vol. 18 (1923) pp. 87-95.
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By well known properties of the class H,, it will suffice to take
r=1. Let ¢(w) =) _a.,w". Since, for any fixed R [0<R<1] and uni-
formly with respect tod [—7 <& <], the series Y_a,R""™ converges
to ¢(Re™”), the result can be deduced by means of the well known
equation ||¢(¢") —p(re?)||,—0 [r—1].

LeEMMA 2. Let w= (1 —2) (¢+2)"1. The function F(z) belongs to D, if,
and only if, the function (1+w)~%?p(w) belongs to H,, where o(w)
= F(z2).

Hille and Tamarkin have proved! that the condition ¢(w) EH, is
necessary. To define the function (1+4w)~??, we cut the w-plane
along the negative real axis from w=—1 to w= — . When F(z)
belongs to §, then its limit function F(#) [y—0, x=¢] belongs
to L,(—®, «), therefore (1+4€°)~2rp(e?) to L,(—m, ). Let
Y(w) =(14+w)"2rp(w),and 0 <q<p/3. By Hélder’s theorem, we have

S 1 ao= ([ sean 1Y ([ 1—1;—;?"‘—) .

The right side is uniformly bounded for 0 <7 <1. Hence ¢(w) EH,;
its limit-function ¥ (e”), however, belongs to L,(—m, w); hence!?
¥(w) EH,. Conversely, let Y(w)EH,. From a result due to R. M.
Gabriel® we deduce that

fclrﬁ(w)l”\ dw| < 2f_r|«//(ew)lpd0,

where C is any circle strictly interior to the unit circle T' [|w| =1].
By Fatou’s theorem, this inequality holds when C is a circle touch-
ing T' from within at w= —1. Finally, by the transformation
w= (i —2)(i + 2)71, we deduce that | F(x + iy)|, = 2%#||y(e”)||»
[0 <y < ® ] which proves the lemma. In a similar way we can show
that when F(3)EH, and FH)EL,(— o, ®) [0<pt< o] then
F(z) €9,

LEMMA 3. Let 0<p= o, let f(2) EDp [n=1, 2, - - - 1, and let f.(t)
be the limit-function of f.(z). Let F(3) be defined in (— «, «) and
| F(t) —fa(t) | /—0 as n— oo, Then F(t) is equivalent to the limit-function
of an element f(3) of ©,.

U Loc. cit. Lemma 2.5.

12V, Smirnoff, C. R. Acad. Sci. Paris vol. 188 (1929) pp. 131-133. A. Zygmund,
Trigonometrical series, Warsaw, 1935, 7.56(iv).

13 J. London Math. Soc. vol. 5 (1930) pp. 129-131. Cf. Hille-Tamarkin, Lemmas
2.1 and 2.5.
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The proof for 0 <p < = is entirely different from thatfor 1 £p = 0,
given in a former paper.”* Let 0<p <1 and p>0, and let ¢(2) €D,.
Then, for p=y< », we have Iqb(z)l =((1/2)wp)~tr |d>(t)|,,.15 Since
| £ (&) = fm(®) | ;=0 [m>n— ], taking ¢(2) =fn(2) —fa(z) We can de-
duce that the sequence {f.(2)} converges to an analytic function f(z),
uniformly for — © <x < «, p<y < «. Since there is a constant K, in-
dependent of #, such that |f.(t)|,<K, we have |fu(x+iy)|,=K,
and we can deduce that ’f(x+1ly)|p§K for any positive y. Hence
f()E€9D,. We are left to show that f(f), the limit-function
of f(z), is equivalent to F(f) in (— «, ). Given ¢>0, we have
l(fm(x) —fw(x)|2<e/12 for m= N, fixing N in a suitable way, and
]fN(x+'iy) —fN(x)[gé ¢/6 for 0<y=<8=20(¢, N). Hence

| fu(® + i9) = fu(®) |5 < | fn(x + iy) — fu(x 4+ iy) |5
+ | fu() — fw(®) |5+ | fv(x + 63) — fw(2) |7 < ¢/3

form= N, 0<y=9J, since the first term on the right side is not greater
than the second term. Given M >0, we have

M M
f | 1(2) — fu(2) |ds < f | (5 + iy) — fulz + iy) |2ds
—-M —-M
+ | f(x 4 iy) = (@) |7+ | fulx + i3) — fu(@) |5

The right side is smaller than e for m =mq(e), as we see fixing a suit-
able value for y. Consequently f(x) = F(x) almost everywhere in any
finite interval (— M, M) and, therefore, in (— «, «). With a slight
alteration, the proof holds for 1 £p < .

By the lemma, the necessity of the condition in Theorem 2(a) is
evident. For s,(f) belongs to L,(— «, =), therefore s,(3) to 9,. To
prove its sufficiency, we take first 1 <p < . By Theorem 1, there are
rational functions R,(z) such that their only poles lie at z=f and z=0
and that [ F(t) —R.(2) | »—0 as n— o, Taking R,(2) =5.(2)+0.(2),
where the rational functions s, and ¢, vanish at infinity and have no
poles other than at z=§ or =0, respectively, we have s.(2) ED,,
0.() €E9p. Denoting by $f the Hilbert operator

o = %Pvfwf(t)dt

)
ol — %

we have | 6§f| p = C,,]f] » OF=1F(x) and 95, =15,(x), Do, = —i0.(x). 1

14 H, Kober, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 421-427.
15 This can be shown by means of the inequality (73), M. Plancherel and G. Polya,
Comment. Math. Helv. vol. 10 (1937-1938) pp. 110-163.
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Hence

2| F() — s.(8) |, = | iF + OF — (iR, + HR.) |»
S|F—Rulp+|9F - R)|» = €+ D|F = Rl

which tends to zero as n—s . Hence | F(£) —s.(t) | »—0as n— oo,

Letnow 0<p=1land F(z) EDp, letB=—1,2=1(1 —w)(14+w)*and
o(w) = F(z). Given ¢>0, from the Lemmas 2 and 1 we infer the exist-
ence of a polynomial P(z) such that

f "] ple)(1 + o) — P(ew) |2t < ¢/

I.

where ¢=tan ¢/2. Let b be an integer, p71 <b=14p~L Then the ra-
tional function x(z) = (24)(i+2)"P{ (i —2) (i+2)~'} has no singular-
ity except at z=—4i. Since x({) EL,(—©, «), we have |x(2) | »
=(C< », Now the function (1+4¢"?)2/»=> can be approximated by
polynomials Q.(e?) [m=1, 2,.-.], uniformly for —m<d=mr.
Hence, for some m, we have

fw (1 + 340)2/19})(1:___{) - X(t)Qm (f:.i)
o 1+t 1+t

Thus | F(¢) —x(#)Qn{ (6 —£) (i+£)~1} | , < €/2. This completes the proof
which, slightly altered, holds for 1 <p £ 2.

For p=1, 2, «, we obtain explicit approximating functions by
Theorem 1’ and by the lemma:

Let 1=p=< o and F(2) ED,, let a be an integer and a =0 for p=1,
a=2 for p= o, a =1 otherwise; then

Hence

P
dt = ¢/2,

FO) - (1 + eiﬂ)ﬂpr(—j—;—j)

4
dt < ¢/2.

® (e — )"
f F(f) —————dt =0 forn=0,1,2,--.
—o0 (t - ﬁ) wha
TuEOREM 2’. Let p=2,1,0r © and c=1, 2, or 0, respectively; let
F(2) €D, and F(t), the limit-function of F(2), be continuous everywhere
including infinity when p = . Let s,(2) be defined by

R T L o |

=0 (3 — B)¥te n+1i0im @E—PBF Lp=w
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where
BB G

2 _wF(t) (B — p+H

Then, uniformly for 0y < «, | F(x+1y) —sa(x+1y) | »—0as n— oo,

Applying Theorem 2’ to the components of g(z)=(1/2)s(1—s)
T'((1/2)s)m*/2¢(s),® where {(s) is the Riemann zeta-function and
2=1(1—2s), we can deduce the following corollary:

Let0=a< »,g=1(1—a), r=1(14+a), let

ay =

d(x) = i en'ras by =3(1)/2 + (1 — a/2) °Gv“"‘zS"(v)dv;

Nn=—00 1
[©))]

(— 90)’c
L, (%) = ch+;,k+;
k=0 k!

=(—1) f 0’(7)) L (1og 7)/2 — (a/Z)L (log v)/2} dv,

n > 0.
J q — 2\" q 4_ AN
b, ()
,E, {<r + z> r—z
converges to g(2) uniformly for — o <x< o, —a=y=a, while it does
not converge whenever |y| >a.

Then the series

The series takes a simple form for @ =0 (critical line).

THE UNIVERSITY,
EDGBASTON, BIRMINGHAM, ENGLAND

8 In fact to the function gi(z—ia)EP,, where g(z)=g1(z)+g(—2), £)
= ((1422)/16) [ {8 (t) =1 }1G==Dleds — (1/4) — (43/4) {9(1) —1}.



