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THEOREM 

W. L. AYRES 

The cyclic connectivity theorem was first proved for the plane in 
1927 by G. T. Whyburn [5]. The extension of this theorem to metric 
space afforded some difficulty and the first proof [ l ] was long and 
tedious and complicated with convergence difficulties. A second and 
simpler proof appeared in 1931 [ó], but in this proof it is necessary 
that quite a number of properties of Peano spaces be proved in 
advance. 

This note at tempts to give a new proof in which convergence 
troubles are encountered at just one point (step (b)) and in which 
just three theorems about Peano space need be known in advance: 
(A) Every component of an open set is open. (B) Open connected sets are 
arc-wise connected. (C) The space is arc-wise locally connected. Actually 
just two properties need to be established before cyclic connectivity 
can be proved, for the third theorem (C) is a simple consequence of 
the first two.1 Thus the cyclic connectivity theorem may be estab­
lished at the very beginning of the theory of Peano spaces and is 
available for use in studying other properties. 

CYCLIC CONNECTIVITY THEOREM. If no single point of a locally corn-
pact, connected and locally connected metric space separates the space 
between the two given points, there is a simple closed curve containing 
the two points. 

Let p and q be the two points. There exists an arc a of the space 5 
with end points p and q by (B). We shall say that an arc /3 spans the 
point v of a if (3 has only its end points on a and v lies between these 
end points. We shall say that a set of arcs C spans a subset K oî a 
if each point of K is spanned by some arc of the set C. 

If an arc /3 exists with end points r and q and such that a-l3 = r+q, 
then step (d) in the proof has been achieved. Hence we consider only 
the case where no such arc exists. This assumption is used in the 
proof of step (b). 

Presented to the Society, September 7, 1939, under the title Peano spaces as the 
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1 Let G be the component of S(p, e) containing the point p. By (A), G is open. Then 
for some ô, S(p, ô)(ZG. By (B) G is arc-wise connected. Hence every point of S(p, b) 
may be joined to p by an arc in G, and thus in S(p, e), which proves arc-wise local con­
nectivity. 
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(a) If r is a point of a — p — q, there is an arc /3 spanning r. 
As r does not cut S between p and g, by (A) p and q belong to the 

same component C oî S — r. Then C contains an arc y with end points 
p and q by (A) and (B). On y in the order from p to q there is a first 
point y of the subarc rq of a. On y in the order y to p there is a first 
point x of the subarc r£ of a. Then the subarc xy of 7 is the desired 
arc ft 

For any point r, let / ( r ) be the greatest lower bound of the di­
ameters of ft for all arcs ]8 spanning r. 

(b) f(r)—>0 as r—>q. 
If this is false, there is an e > 0 and a sequence of points of a con­

verging to q so that no one of these points may be spanned by an arc 
of diameter less than e. We may choose e so small that S(q, e) is com­
pact. Let us select a spanning arc for each point of the sequence. In­
finitely many of these arcs are distinct since we assumed in the begin­
ning that no one of them has q as an end point. Hence there exists 
an infinite set of arcs /Si, ft, ft, • • • such that (i) c r f t = x;+:y;, the 
end points of ft, and Xi precedes yi on a, (ii) diam ft ^ e, (iii) ft spans 
a point £; of a which cannot be spanned by any arc of diameter less 
than e, (iv) we have the order pp\y\piy^ • • • q on a1 (v) yi—^q and 
p(yi> Q) <€ /6 . On ft in the order y$- to Xi let s* be the first point such 
that p(Z{, q) = e/3. The set of points {zi} has a limit point z and we 
may assume Zi—>z. By (C) there exist arcs ZiZ of diameter less than 
e/6 for i sufficiently large. Then yiZi+ZiZ+Zi+iZ+yi+iZi+i contains an 
arc of diameter less than e spanning p%+i, which is a contradiction. 

(c) If r is any point of a — p — q, there exists a countable sequence of 
arcs {fit} spanning the set rq — q and such that diam &-—>(). 

Let pi—>q with the order prpip2 • • • q. Let po = r and a» be the subarc 
pi-ipi of a. From (a) there exists a family of arcs spanning a». From 
(b) these may be chosen of arbitrarily small diameter for i large. 
Using the Borel theorem there is a finite subfamily spanning a». The 
set of all these finite subfamilies is a countable set with the desired 
properties. 

(d) There is a simple closed curve containing q. 
Let Ui and Vi be the end points of /3t- and suppose the order pUiViq 

on a. From the method in which the arcs ]8t- were chosen we see that 
only a finite number span any one point and no one intersects more 
than a finite number of others. Of the finite set spanning r, choose the 
one whose end point Vi is nearest g on a in the order p to q. We may 
assume this is ft. Of the finite set, if nonvacuous, of arcs ft which 
intersect ft — u\ — vi, choose the one whose end point Vi follows all 
others on a. We may assume this is ft. Of the finite sets, if nonvacu-
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ous, which intersect /32 — u^—v^, we choose the one whose end point 
Vi follows all others on a, and we may suppose this is /33. This process 
must terminate at some finite step for otherwise ][j8t- would contain 
an arc having u\ and q as end points and containing no other point 
of a.2 This arc together with the subarc U\q of a would give the de­
sired simple closed curve. 

If the process terminates at /3fc, then Xa& contains an arc 71 with 
end points Si = Ui and ti = Vk and containing no other point of a. We 
now define an arc 72 with end points s2 and t2 using exactly the 
process by which 71 was defined but starting with the arcs spanning 
Vk instead of r. We continue and define 73, 74, • • • . The arcs ji are 
mutually exclusive except that /4- may coincide with Si+2. On a we have 
the order Si<s2<tiSss<t2^s±< • • • <q. Then the desired two arcs 
forming a simple closed curve containing q are defined 

Vi = q + ]C T2*-i + ]C subarcs t2i-is2i+i of a, 

772 = q + subarc SiS2 of a + ^ 72; + 2Z subarcs hiS2%^-2 of a. 

From step (d) the cyclic connectivity theorem follows easily. We 
have a simple closed curve containing q. Similarly one contains p. 
If these simple closed curves have two points in common, their sum 
contains a simple closed curve containing p and q. If they have but 
one point in common, their sum plus an arc pq not containing this 
point will contain the desired simple closed curve. If they do not inter­
sect, then their sum plus an arc joining them plus its finite spanning 
system enables one to choose the desired two arcs. In this case the 
selection of the two arcs follows the methods used in picking 771 and 
rj2 but the whole process here is finite. 

Remarks. The cyclic connectivity theorem is a special case of the 
#-Bogensatz where n = 2 and the two closed sets are single points. All 
proofs that have been given for the w-Bogensatz are extremely long 
and intricate [2, 3, 4, 7], and a simple proof of this important theorem 
would be a real contribution. Unfortunately the method used in this 
note does not appear to generalize to the higher values of n. 
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PURDUE UNIVERSITY 

INVERSES AND ZERO-DIVISORS 

REINHOLD BAER 

It may happen that an element in a ring is both a zero-divisor and 
an inverse, that it possesses a right-inverse though no left-inverse, 
and that it is neither a zero-divisor nor an inverse. Thus there arises 
the problem of rinding conditions assuring the absence of these para­
doxical phenomena; and it is the object of the present note to show 
that chain conditions on the ideals serve this purpose. At the same 
time we obtain criteria for the existence of unit-elements. 

The following notations shall be used throughout. The element e in 
the ring R is a left-unit for the element u in R, if eu = u ; and e is a left-
unit for R, if it is a left-unit for every element in R. Right-units are 
defined in a like manner; and an element is a universal unit f or R, if 
it is both a right- and a left-unit for R. 

The element u is a right-zero-divisor, if there exists an element v ^ 0 
in R such that vu = 0 ; and u is a right-inverse in R, if there exists an 
element w in R such that wu is a left-unit for u and a right-unit for R. 
Left-zero-divisors and left-inverses are defined in a like manner. Note 
that 0 is a zero-divisor, since we assume that the ring R is different 
from 0. 

L(u) denotes the set of all the elements x in R which satisfy xu = 0; 
clearly L(u) is a left-ideal in the ring R and every left-ideal of the 
form L(u) shall be termed a zero-dividing left-ideal. Principal left-
ideals1 are the ideals of the form Rv for v in R and the ideals vR are 
the principal right-ideals. 
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1 This is a slight change from the customary terminology. 


