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Let K/k, K'/k be two extensions of a basic field k. By a composite 
extension of these two extensions, we understand the complex notion 
formed of an extension §t/k of k, of an isomorphism r of K/k into 
$/k and of an isomorphism T' of K'/k into $/k, provided the follow­
ing conditions are verified : 

(1) $ is generated by the two fields KT, K'T'. 
(2) If A, A' are subsets of K, K' respectively which are algebrai­

cally independent over kf the set Ar\J(A ' ) r ' is algebraically independ­
ent over k. In other words, the algebraic relations which hold in $ 
between elements of KT, K'r' are consequences of the algebraic rela­
tions which hold between elements of KT alone or of K'T' alone.1 

THEOREM 1. Any two given extensions K/k, K'/k have at least one 
composite extension. 

Let B' be a transcendence basis for K'/k. We can find a purely 
transcendental extension Q/K which has a transcendence basis B'T' 
with the same cardinal number as B' (r' stands for a one-to-one 
mapping of B' onto B'T'). The algebraic closure Q of 0 contains the 
algebraic closure P of the field ¥ = k(B'T'). The mapping r' may be 
extended to an isomorphism of K'/k with an extension K'T''/k con­
tained in Y/k, and a fortiori in Q. We set $ = KK'T', and denote by r 
the identity mapping of K/k into &/k. We claim that the system 
(®/k, T, T') is a composite extension of K/k, K'/k. 

It is sufficient to check the condition (2), and we may assume with­
out loss of generality that A, A' are finite. There exists a finite subset 
B{ of B' such that k(A'', B() is algebraic over k(B{). Let d, d', e be 
the number of elements in A, A{, B(. The elements of B{, being 
algebraically independent over K, are a fortiori algebraically inde­
pendent over k(A). Therefore, the degree of transcendency of 
k(Ay A'T\ B{T') over k is d + e. The degree of transcendency of 
k(A{T\ B{T') over k(A{r') is e — d'. The degree of transcendency ƒ 
of k(A, A'T', BiT') over k{A) is therefore less than or equal to e — d. 
I t follows that the degree of transcendency of k(A, A'T') over k, which 

Received by the editors October 1, 1941. 
1 The problem of composite extensions has been considered by Zariski (Algebraic 

varieties over ground fields of characteristic zero, American Journal of Mathematics, 
vol. 62 (1940), pp. 187-221) in the case when one of the extensions K/k, K'/k is 
algebraic and normal. 
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is d+e—f, is at least equal to d+d', which proves that A\JA,T' is 
algebraically independent over k. 

Let ($/k, r, r ' ) and ($i/&, Ti, r{) be two composite extensions of 
K/k, K'/k. We shall say that these extensions are isomorphic if there 
exists an isomorphism a of $/k with $'/k such that ri = 0T, r{ = ar'. 

The consideration of the case where K/k, K'/k are algebraic over k 
(but not normal) shows immediately that there are in general several 
non-isomorphic types of composite extensions. The extreme opposite 
case occurs when k is algebraically closed in K and K' (k is said to 
be algebraically closed in K if every element of K which is algebraic 
over k lies already in k). In that case, the composite extension $/k 
turns out to be unique; but, unfortunately, k may fail to be algebrai­
cally closed in $ . For instance, let us take K=Kf —k(x, (a+bxv)llv), 
where p^O is the characteristic of k, and where a, b are elements of k 
such that k((a)llp, (b)llp) is of degree p2 over k. I t is easy to verify 
that k is algebraically closed in K; on the other hand, the composite 
extension is k(x, y, (a+bxp)llp, (a+byp)llp)/k = k{x,y, (a)llp, (b)llp)/k. 

We shall get around this difficulty by introducing the following no­
tion : 

DEFINITION 1. A field k is said to be quasi-algebraically closed (q.a.c.) 
in K if every element a of K which is algebraic over k is purely insepara­
ble over k (that is, is the unique root of some equation with coefficients 
in k). 

We shall prove the following theorem : 

THEOREM 2. Let ($/&, r, r ' ) and ($i/&, TI, T{) be two composite ex-
tensions of the extensions K/k, K'/k. Let L, Lf be fields such that: 
(1) kCLCK, kCL'C-Kf', (2) L, L' are algebraic over k; (3) L is q.a.c. 
in K and L' is q.a.c. in K'. If an isomorphism a0 of LT L'T''/k with 
Z/i L'ri/k is such that <T0T coincides on L with Ti and a0r' coincides on Lf 

with T{ , then <TQ may be extended to an isomorphism of ($t/k, r, r ' ) with 
( f l l /* ,Ti ,Ti ' ) . 

In other words, the type of the composite extension (®/k, r, r ' ) is 
determined by the type of the composite extension (LT L'r'/k, r, r ' ) of 
L/k, V/k. 

We shall first prove three lemmas. The fields which are considered 
in the first two of these lemmas are assumed to be all subfields of some 
all-inclusive field. 

LEMMA 1. Let k be a q.a.c. sub-field of a field K. Let Z be afield such 
that kQZCZK, and y be an element of K which is a root of an irreducible 
equation F = 0 with coefficients in Z. Let Q/k be an algebraic extension 
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of k, a be an element of 0 and <ï> = 0, the irreducible equation in k which 
is satisfied by a. Then the polynomial F is a power of an irreducible 
polynomial in the field flZ, and $is a power of an irreducible polynomial 
in K. Moreover, A is q.a.c. in the field KQ,. 

We may assume without loss of generality that Q, = k(a). Let L be 
the algebraic closure of k in K (that is, the field consisting of the ele­
ments of K which are algebraic over k). L e t $ i = 0 be the irreducible 
equation satisfied by a in L. Therefore 3?i divides <£. On the other 
hand, if p is the characteristic of k, the polynomial $ f has its coeffi­
cients in k if u is large enough, and therefore <£ divides <&f\ It follows 
that # is a power of $1. 

If $1 = 0 is the irreducible equation satisfied by a in K then $ / di­
vides <3>i. Therefore, every root of the equation <3>i = 0 is also a root of 
$ i = 0, which shows that the coefficients of $ / are algebraic over k. 
I t follows that<ï>i =<ï>i which proves that<ï> is a power of an irreducible 
polynomial in K. 

Let Fi = 0 be the irreducible equation satisfied by y in LZ, and let m 
be the degree of Fi. If n is the degree of </>i, we have 

[LZ{y, a):LZ] = [LZ(y, a):LZ(y)][LZ{y):LZ] = mn 

because <ï>i is irreducible in K, and a fortiori, in LZ(y). It follows that 

[LZ(y, a):LZ(a)][LZ(a):LZ] = mn. 

But \LZ(a)\LZ\—n, s ince$i is irreducible in LZ\ therefore we have 
[LZ(y, a) :LZ(a) ] = n which shows that F\ is irreducible in LZ(a). On 
the other hand, Fi divides F; since LZ is purely inseparable over Z, 
the same argument which was used above for $ i shows that F is a 
power of Fi. Since Z (Z&Z = Z(a) CLZ(a), Fis also a power of an irre­
ducible polynomial in OZ. 

There remains to prove tha t k(a) is q.a.c. in K(a). Let fi be an ele­
ment of K(a) which is algebraic over k(a), and therefore also on k. 
There exists a power ap* = ai of a which is separable over k; we set 
ft = /3p*, whence fteüT(ai) and 

ft = £o + Siai + • • • + h-iot\ Hi G K, 

where h= [K(ai) :K]. If we write the corresponding formulas for the 
conjugates of ft with respect to K, and observe that ai is different 
from its conjugates, we see that the £/s may be expressed rationally 
by means of the conjugates of ai, ft. I t follows that £0, ?i, • • • , £a-i 
are algebraic over k, and therefore belong to L. Since L is purely in-
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separable over k, we may conclude that some power jSf of ft lies in 
k(ai), where p is the characteristic of k (/3i££(ai)) (if ƒ> = 0). Wehave 
j3p* G Œ which completes the proof of the lemma. 

Before stating Lemma 2, we have to introduce another notion. Two 
extensions K/k, £l/k of the field k which are contained in some larger 
field are said to be algebraically dissociated if the following condition 
is realized: If A, B are subsets of K, Œ, respectively, which are alge­
braically independent over k, the set A\JB is also algebraically in­
dependent. 

LEMMA 2. The Lemma 1 {abstraction made of what concerns a and <i>) 
remains valid when 0,/k is any extension of k, provided the extensions 
0,/k, K/k are algebraically dissociated. 

Let C be a transcendence basis of 0,/k and Qo the field k(C). Under 
our assumption the extension Ktio/K is purely transcendental. We 
claim that Œ0 is q.a.c. in Kü0. It will of course be sufficient to prove 
it in the case where C consists2 in a single element/. LetP(t)/Q(t) =co 
be an element of KÇl0~K(t) (where P(t)> Q(t) are polynomials with 
coefficients in K). We shall prove that if co is algebraic over Q0, it can 
be expressed as a rational function in t with coefficients in L (the 
algebraic closure of k in K). From this result it will follow that Lft0 

is algebraically closed in K&o, and therefore that fi0 is q.a.c. in KQ0. 
The proof will proceed by induction on the number l = d°P+d°Q 

where d°P, d°Q denote the degrees of P , Q with respect to t. I t is obvi­
ous for I = 0; assume that the result holds for I — 1. If either one of the 
elements P(0), Q(0) is null, we can reduce ourselves to the case /— 1 by 
considering instead of co one of the elements œ/t, to) (these elements 
are also algebraic over £20). So, let us assume that P(0)Q(0)?^0. We 
have by assumption a relation of the form 

A0(t)P»(t) + Al(t)P^(t)Q(t) + • - • + AJf)Qnif) = 0, 

where Ao(t), • • • , An(t) are polynomials in / with coefficients in k, 
not all divisible by t. Putting / = 0, we conclude that P(0)/<2(0) is alge­
braic over k} and therefore belongs to L. The element co' =P(t)/Q(t) 
— P(0)/<2(0) is again algebraic over O0 and may be written in the form 
tP'(t)/Q'(t) with d?P'+d°Q'=l-\. Thereforeœ'/tEUt) anda>GZ,(0, 
which proves our assertion. 

The extension ZQ,Q/Z being purely transcendental (because KQo/K 
is), the polynomial P, which is irreducible in Z, remains irreducible 

2 This property was proved in the paper, Pencils on an algebraic variety and a new 
proof of a theorem of Bertini, by Zariski, Transactions of this Society, vol. 50 (1941), 
pp. 48-70. 
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in ZŒ0. The extension Q/Q0 being algebraic, it follows from Lemma 1 
(applied with fl0 instead of k) that F becomes a power of an irreduci­
ble polynomial in ZÎ2 and that fl is q.a.c. in KÛ; Lenima 2 has been 
proved. 

We pass now to the third lemma. The notations used in this lemma 
are the same as those introduced in the statement of Theorem 2. 

LEMMA 3. Let Z be a field such that LQZQK, and let y be an element 
of K. (1) If y is transcendental over Z, yr is transcendental over ZrK'r\ 
(2) If y is a root of the irreducible equation F = 0in Z, the polynomial FT 

is a power of an irreducible polynomial in ZTK,T\ 

(1) Let B' be a transcendence basis of K'/k and C be a transcend­
ence basis of Z/k ; hence CTVJj3'T' is a transcendence basis of ZTK'T'/k. 
If y is transcendental over Z, the set CU {y} is algebraically inde­
pendent; therefore CT\JB,T'\j{yT) is algebraically independent over 
k, which proves that yT is transcendental over ZTK'r\ 

(2) Since the extensions ZT/k, K'T'/k are clearly algebraically dis­
sociated over kf assertion (2) results from Lemma 2. 

We pass now to the proof of Theorem 2. We consider the set 2 of 
the systems (Z, Z ' , a(Z, Z')) composed (a) of fields Z, Z ' such that 
LCZCK, L'CZ'CK'; (b) of an isomorphism <r(Z, Z') of ZTZ'r' with 
ZT1Z/ri' such that cr(Z, Z')T coincides with T\ on Z, that a(Z, Z')T' CO-
cincides with r{ on Z ' , and that c(Z, Z') coincides with <r0 on LTL'T'. 
We order the set S by the convention that 

(Z,Z',<r(Z,Z')) ^ (17, t/',<r(tf, U')) 

if Z C 17, Z ' C U' and <r(l7, C/7) coincides with <r(Z, Z') on Z 'Z ' T \ I t is 
trivial to verify that in this ordered set every completely ordered sub­
set has an upper bound. Hence, by Zorn's theorem, S has a maximal 
element, which we denote from now on by (Z, Z ' , or). Theorem 2 will 
be proved if we can show that Z = K, Z'—K'. 

Let y be an element of K, and assume for a moment that y is 
transcendental over Z. Then yT is transcendental over ZT and yTl is 
transcendental over ZT1. By Lemma 3, y is also transcendental over 
ZTZ'T', and a fortiori, over ZTZ'T', Similarly, y 1 is transcendental over 
Z r lZ /Ti '. We set U=Z(y) ; then it is possible to extend a to an isomor­
phism a* of [AZ'1"' with UT1Z'Ti' in such a way that <r*{yT) =yT1. I t fol­
lows that a*T coincides with T\ on U and that or*r/ coincides with r{ 
on Z ' . But this is contrary to the maximality of (Z, Z ' , a). 

I t follows that X is algebraic over Z, and similarly that Kf is alge­
braic over Z'. 

Let us again consider the element y G K ; it is a root of an irreducible 
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equation F = 0 in Z. By Lemma 3, FT becomes in ZrZ'T' a power of 
an irreducible polynomial Fu and we have Fi(yT) = 0 . The polynomial 
F{ is irreducible in ZTlZ'T\ ', and FCT is a power of F{. On the other hand, 
we have F<TT = Frl and FT1(yTl)=0, whence Fl(yT1)=0. Therefore, we 
may extend o* to an isomorphism o-* of ZTZ'T'(yT) with ZT1Z'n'(yT1) such 
that <r*(yT) = yT1. The isomorphism cr*r of Z(y) into KTlK'Tx coincides 
with the automorphism induced by r\ and <r*r' coincides on Z ' with 
Ti'. By the maximality property of (Z, Z ' , <r), we have Z(y)=Z, 
whence K = Z, and we see in the same way that K' =Z'y which com­
pletes the proof of Theorem 2. 

COROLLARY. Let K/k, K'/k be two extensions of k, and assume that k 
is q.a.c. in at least one of them. Then there exists only one type of compos­
ite extension of our two extensions. 

In fact, if k is q.a.c. in K\ we may apply Theorem 2 with L' =k'. 
If we set ö"o = TiT~1, (To is an isomorphism of Lr with LT1 and Cor coin­
cides with T i o n L ; it follows that ao may be extended to an isomor­
phism of ($ , r, T ' ) with ($i, Ti, Ti ). 

THEOREM 3. Le/ ($/&, T, T ' ) fo a composite extension of K/k, K'/k 
and let L, L' be fields which satisfy the conditions (1), (2), (3) of Theorem 
2. Then LTL'T' is q.a.c. in $£. 

By Lemma 1, LrL,T' is q.a.c. in LTK'T''; by Lemma 2, we see that 
LTK'T' is q.a.c. in KTK,T'', because the extensions i£r/£> K,r'/k are 
algebraically dissociated. Let ce be an element of $ which is algebraic 
over LTL'T'; then, if p is the characteristic of k, the second result 
shows that, for s large enough, a? Ç:LTKtr'. Since ap* is also algebraic 
over LTL'T'', the first result shows that (c^8)p*'=ap*+*'EZTZ/T', for $' 
large enough, which proves Theorem 3. 

COROLLAR,Y. If k is q.a.c. in both K and K'> it is also q.a.c. in KrK'T'. 
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