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all integral functions f(2) satisfying the conditions f(t) ELi, Of &L,
|f(z), <Ky, exp {(Za—l- €) [ z| } The proof is based upon a result due
to Plancherel and Pélya.!?
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THE BEHAVIOR OF CERTAIN STIELTJES CONTINUED
FRACTIONS NEAR THE SINGULAR LINE

H. S. WALL
1. Introduction. We consider here continued fractions of the form!

g g1z (1 —g)ger (1 — go)gas
1.1 f&)=— —

14+ 1 + 1 + 1 +e,

in which g¢=0,0=g,<1, (=1, 2, 3, - - - ), it being agreed that the
continued fraction shall terminate in case some partial numerator

vanishes identically. There exists a monotone non-decreasing function
¢(u), 0=u =1, such that

L d
(1.2) 1) = f lff“:u;

and, conversely, every integral of this form is representable by such a
continued fraction. Put M(f) =1l.u.b.|,<1 |f(2)|. Then M(f) <1 if and
only if the continued fraction can be written in the form

h1 (1 - hl)hzz (1 - hg)h;gZ

(1.3) f(z) = —

1+ 1 + 1 +---,
in which 04,1, (=1, 2, 3, - - - ). These functions are analytic in
the interior of the z-plane cut along the real axis from z=—1 to
z=— 0,

The principal object of this paper is to prove the following theorem:

THEOREM 1.1. If 0<h, <1, (n=1,2,3, - - -), and h,—1/2 in such
a way that the series Zl hn—1/ 2] converges, then the function f(z) given
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by (1.3) approaches a finite limit o(s) as z——s, s=1, from the upper
half-plane, and the limit a(s), the complex conjugate of a(s), as z——s
from the lower half-plane. The funciion a(s) is continuous, and is real if
and only if s=1. There is a constant C such that l f(® | < C over the entire
plane of z exterior to the cut along the real axis from z= —1t0 2= — .

Inasmuch as the function (1.1) can be written in the form
f(2) =go/[1+2f*(2) ], where f*(2) has the form (1.3), one may conclude
at once that if go>0, 0<g, <1, (n=1,2,3, ), >.|g.—1/2| con-
verges, then the function f(2) given by (1.1) approaches a finite limit
B(s) as z——s, s >1, from the upper half-plane, and the limit g(s) as
2— —s from the lower half-plane. The function 8(s) is continuous and
not real for s > 1. The function f(z) given by (1.1) may become infinite
as z——1, for example, if go=1, g,=1/2 (=1, 2, 3,---), then
f(@)=(1+z)"12

2. Proof of Theorem 1.1. There is a one to one correspondence be-
tween functions of the form (1.3) and functions e(x) which are real
when « is real, analytic for |%| <1, and for which M(e) <1, such that
if f(z)<»e(x) then?

1 — e(x)
1+ we(x)
(i) The transformation z=4x/(1 —x)? maps the interior of the circle
|| =1 one to one upon the interior of the z-plane cut along the real

axis from 2= —1 to 3= — «. Hence it follows at once from (2.1) that
if M(e) <1, then

(2.1) —;—(1—x) = f(z), 2z =4xz/(1 — x)? !xl<1.

over the entire domain of analyticity of f(z2).
(ii) In (2.1) put x=£+1n, e(x) =u-+idv, f(z) =P+1Q, where &, 7,
u, v, P, Q are all real. We then find for Q the value

n(u? + 02 — 1) + o(§ + 32 — 1) .
2[1-l-acfz(oc)|2

If s21, o=[s—242i(s—1)42]/s, so that |g| =1, then as x—¢ from
the interior of the circle |x| =1, 2 must approach —s from the upper
half-plane. If M(e) <1, and e(x) approaches a limit e(s) as x—o,
|x] <1, then it follows from (2.1) that f(z) approaches a finite limit

(2.2) Q=

2 H. S. Wall, Some recent developments in the theory of continued fractions, this Bulle-
tin, vol. 47 (1941), pp. 405-423; Theorem 5.1, p. 415.
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a(s) as 2——s from the upper half-plane; and from (2.2) it follows
that Q has the limit

2.3 (s— 12 le()|2—1

s '|1+ae(a)!2’

where is zero if and only if s =1. Hence «(s) is real if and only if s=1.
Inasmuch as f(Z) =f(z), it follows that f(z) has the limit a(s) as 2——s
from the lower half-plane. Clearly «(s) is continuous if e(x) is con-
tinuous for |x| 1.

(iii) To complete the proof of Theorem 1.1 it remains to be proved
that when | 2,—1/2] converges then M(e) <1 and e(x) is continu-
ous for 'xl <1. Put eo(x) =e(x),

1 4, — en(w)

(2.4) ent1(%) = T 1 he(®)

t,=e,0);n=01,2,.---.

Then t,1=1—2hk, (n=1, 2, 3, --). Now, Schur?® proved that if
llfn—1l <1,(n=1,2,3,---), andzltnl is convergent, then M(e) <1,
and e(x) is continuous for ]x| =1. Since 0<%, <1 by hypothesis, it
follows that —1 <#,_3<1; and since the series El ho— 1/2| converges
by hypothesis, it follows that > |t.| converges.

This completes the proof of Theorem 1.1.

1t will be seen from (2.3) that if f(2) has a real limit as z2——s, s >1,
then M(e) =1. This is true also if f(z) becomes infinite as z——s, s =1,
and in this case e(x)— — 1/ asx—0c. Inasmuch aslim, ., (3+5)f(z) =0,
lim,., f(z) =0, if M(e) <1, it follows that the corresponding mass
function ¢(u) (cf. (1.2)), is continuous for 0 =% =1 in this case.*

3. An example. If we apply the transformation (2.4) to a function
f(z) of the form (1.3) we obtain a sequence of functions fo(2) =f(2),
f1(2), fo(2), - - - all having continued fraction expansions of the
same character as that of f(z). Suppose that in (1.3), 0<A,<1,
(n=1, 2,3, ), and that the seriesZI Bo— 1/2| converges. On ap-
plying Theorem 1.1 we find at once that as z——s, s=1, I(3) >0:

1 g1 — a(s)

lim fi(z) = — — —————— = ai(s);

e = = o= )
and that a;(s) is real if and only if s=1; au(1) =1; ai(s) is continuous
for s =1. By mathematical induction, fs(2), fs(2), - - - also have this

3 1. Schur, Uber Potenareihen, die im Innern des Einheitskrieses beschrinkt sind,
Journal fiir die reine und angewandte Mathematik, vol. 147 (1916), pp. 205-232, and
vol. 148 (1917), pp. 122-145.

¢ 1. J. Schoenberg, Uber die asymptotische Verteilung reeller Zahlen mod 1, Mathe-
matische Zeitschrift, vol. 28 (1928), pp. 171-199; p. 179.
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property. Let &{ /1+(1 —h{)hiz/14+ (1 —h{)hiz/14+ - - - be the con-
tinued fraction for fi(z). Then we shall prove that Zl hd —1/ 2|
may diverge although ZI hn—1/ 2| converges, and that the convergence
of the series Zl ha—1/ 2| 15 not necessary in order that the conclu-
ston in Theorem 1.1 shall hold. For this purpose, let h,=1/2,
(mn=1, 2, 3,---). Then f(z)=1/[14+1+2)2], (f(0)=1/2), and
filg) =1/[14+ 1A +2) V2] [14+2(1+2) V2], (f1(0) =1/6). The function fi(2)
has the properties stated in Theorem 1.1 for the function f(2) of that
theorem, excepting that, as we shall see, the series D |k —1/2]
diverges. In fact, ht,=@n+3)/2(4n+1), hip_1=@n—3)/2(4n—1),
(n=1,2,3, ), in consequence of the following theorem:

THEOREM 3.1. Let k be a parameter subject only to the conditions
3.1 k= (3 — 4n)/2, (1 — 4n)/2, n=1,23---

and put
ey = (4n — 3)/2(4n — 3 + 2F),

by = (4n — 1+ 4R)/2(4n — 1+ 28),  n=1,2,3 .

Then the continued fraction fi(z) =hP /141 —E)APz/14
A=rEPg/14 - - - converges uniformly in a sufficiently small
netghborhood of 2 =0, and the analytic function fi(2) satisfies the relation

1 b — fula)
(3.2) Sera(2) = = —l‘j‘m .

Proor. The uniform convergence follows from the fact that all the
partial numerators after the first are numerically less than or equal
to 1/4 for zin a sufficiently small neighborhood of the origin. To prove
(3.2), write the right-hand member in the form:

l{h(k) 1— () } 1 { w B P+ ™)
1 _ 1

2 — BB+ 1/£i(2) Y+ 1

4

(1 - h<2k>)h<8k>z (1— h(:))h(f)z }

+ 1 - 1 + -

We are to show that this is equal to fi11(2). This can be done by show-
ing that the odd part of the last continued fraction is identical with
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the even part of the continued fraction for fx;1(z). We omit here the
details of the calculation.®

Let en(x)fa(2), (=0, 1, 2, - - - ). Then we find for the e,’s the
following recursion formulas:

5.3 el o L T @ BT Gy = Vel
(33— 2x)+ (2 — ka+ Enx)en()

(n=0, 1, 2,---). For the special example under consideration,
e(x) =eop(x)=0 and e;(x) =2/(3—x). Hence, although M(e) <1 in this
case, nevertheless M(e;) =1. From the way in which (3.3) was ob-
tained it follows that if eo(x) is an arbitrary function which is real
when x is real, analytic for lxl <1, and such that M(eo) =1, then the
functions ei(x), ex(x), - - - are all of this same character.

k. = €,(0),
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