EVERYWHERE DENSE SUBGROUPS OF LIE GROUPS
P. A. SMITH

A recent note by Montgomery and Zippin! leads one to speculate
concerning the nature of everywhere dense proper subgroups of con-
tinuous groups. Such subgroups can easily be constructed. Suppose
for example that G is a non-countable continuous group which admits
a countable subset G filling it densely. The group generated by G,
is everywhere dense in G but is not identical with G. In the case of
Lie groups, it is easy to see that an abelian G admits non-countable
subgroups of the sort in question ; whether or not a non-abelian G does
so, appears to be a more difficult question. We shall, however, show
that if G is simple, proper subgroups of G cannot, so to speak, fill G
too densely.

Let G be a simple? Lie group of dimension » with »>1, and let U
be a canonical nucleus of G—that is, a nucleus which can be covered
by an analytic canonical coordinate system. An arbitrary point x of U
is contained in the central of at least one closed proper Lie subgroup of
G with non-discrete central. In fact, through x there passes a one-
parameter subgroup 7; the closure of v is an abelian Lie subgroup
and this subgroup is proper since G is simple and 7 > 1.

THEOREM. Let G be a simple Lie group of dimension r greater than
one and let § be a proper subgroup filling G densely. There exists at least
one proper closed Lie subgroup H of G such that those left- (right-) cosets
of H which fail to meet g fill G densely. For H one may take any closed
proper Lie subgroup of G whose central is non-discrete and contains an
arbitrarily chosen point p in ¢(\U, U being any given canonical nucleus

of G.

Proor. Let U, p, H be chosen and let us consider only the left-
cosets of H. It will be sufficient to prove that there exists at least one
coset, say aH, which fails to meet g. For, the cosets obtained by multi-
plying aH on the left by arbitrary elements of g fail to meet g and fill
G densely.

Received by the editors July 15, 1941.

! Deane Montgomery and Leo Zippin, A theorem on the rotation group of the 2-
sphere, this Bulletin, vol. 46 (1940), pp. 520-521. Our theorem may be regarded as a
generalization of the theorem of Montgomery and Zippin and the proofs of the two
theorems may be regarded as being the same in principle.

2 We use simple here in the sense of having a simple Lie algebra. A simple group
need not be connected.
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Let us assume the contrary, namely that every coset of H meets g.
Let H* be the totality of cosets of H and let the elements of H* be
denoted by e*=H, a*=aH, - - --. Let ¢ be the mapping x—x*
(x*=xH) of G into H*. Let H* be topologized in the usual way by
taking as open in H* every set of the form ¢4 where 4 is an open sub-
set of G. The space H* is homogeneously locally euclidean.—Now let
x* be an element of H* and let x be a representative of the coset x*.
Then xpx—! (where p is defined in the theorem) is independent of x.
For if y is a second representative of x*, then x~'yCH so that
x~lyp=px~lysince p is in the central of H. Hence xpx—1=ypy—'. Thus
the formula 7(x*) =xpx—! defines a mapping 7 of H* into G which,
in particular, carries ¢* into p. Evidentally 7 is continuous. In fact
it is easy to see that 7 is analytic relative to an arbitrarily chosen
analytic canonical coordinate system x1, - - -, ¥, covering U, and a
suitably chosen coordinate system covering a neighborhood of e*.

The mapping 7 carries H* into a subset of g. For, by our assumption
on the cosets of H, an element y* of H* can be written in the form
y*=gH where g Cg. Hence we have 7(y*) =gpg—'Cg.—Moreover, any
given neighborhood V* of e* contains at least one point x* such that
7(x*)#p. For otherwise we have 7(yH)=p for every y in a certain
nucleus V of G, that is, for every y in VV and % in H we have yhp(yh)~!
=p or ypy~t=p. But then the one-parameter subgroup of G deter-
mined by p would be invariant, contrary to the hypothesis that G
is simple.

Let W be a nucleus of G such that W-1WW C U. It follows from the
last two paragraphs that there exists in H* a point 2* near ¢* such that
the linear segment e*z* is carried by 7 into an analytic arc contained
in g\ W and consisting of more than a single point. A suitably chosen
piece of this arc, when multiplied on the left by the inverse of one of
its points, furnishes an analytic 1-cell K contained in g\ W and con-
taining e, the identity of G. Starting with K we shall construct a di-
mensionally increasing sequence of analytic continua, subsets of g. In
what follows, let it be understood that all functions are real, single-
valued and analytic over the domains indicated.

We may suppose that K is defined parametrically, say by x;=f;(t)
where —1<t<1 and f(0) =e. The set KK is in g and is defined by
equations of the form x;=g;(s, {) where —1<s, t<1. Suppose that
dim KK >dim K; that is, suppose dim KK =2. Then being an ana-
lytic locus, KK contains points at which it is locally euclidean 2-di-
mensional. If b is such a point, then 6—!KK (a subset of g) is locally
euclidean at e. Hence gM\W contains a 2-cell K, defined say by
xi=hi(u, v) where —1<u, v<1 and %(0, 0) =¢, We next consider the
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set K2K, and suppose that its dimension exceeds that of K,. On con-
tinuing in this manner, we finally obtain a k-cell E in g"\W defined
say by x;=hi(u, - - -, ur) where —1 <u;<1and %(0, - - -, 0) =e¢, and
such that dim EE=dim E=£k. We assert that E contains subsets E*
and F such that (1) E* and F are k-cells; (2) e CFCE*; (3) FFCE*.

To prove this, we first note that by the theory of implicit functions,
E contains a k-dimensional sub-cell E* definable, after renaming the
coordinates x; if necessary, by equations

(1) xi = Xo(wy, -+, xn), i=k+1---,7
where (x1, - - -, xx) ranges over the cube C;: — 6 <x;< 3§, and where
X0, - - -, 0)=e;=0. On replacing é by a smaller number if neces-
sary, it is easy to see that (; contains a cube C,: —u<x;<u
(¢=1, - - -, k) such that if F is the k-cell defined by (1) with
(x1, - - -, xx) restricted to the cube C,, and if ¢ is an arbitrary point

of F, then ¢F, like F, is definable by equations of the form (1):

q
Xi = Xi(xl, Tty xk)

where (xi1, - - -, %) ranges over a certain open subset 4¢of C;. Now
EE is the union of k-cells ¢E (¢CE), hence is k-dimensional at every
point. Being an analytic locus, the points ¢ at which EE is locally
euclidean k-dimensional fill it densely. Consider such a point ¢. The
k-cells F and ¢F intersect at ¢. But since both are contained in EE
which is locally euclidean k-dimensional at ¢, they coincide identically
in the neighborhood of ¢. Hence the functions X; and X7 are identi-
cally equal over an open subset of 4 ¢; hence, by the theory of analytic
functions, they are equal over the whole of 4¢ Hence ¢FCE¥*, and
this is true for a set of points ¢ filling F densely. By continuity this
relation holds for arbitrary ¢ in F. Hence FFCE*, proving our asser-
tion.

It is easy to see that on replacing F by a smaller k-cell if necessary,
we have also F~'CE*. In short F is a k-dimensional local Lie sub-
group of G; hence it is an open subset of a k-dimensional linear sub-
space L of the linear space of the canonical coordinates %3, - - -, x.
If £ <r, there exists in W an element ¢ such that the linear subspace
L’ determined by F’'=aFa is different from L; otherwise the Lie
subalgebra represented by L is invariant. Since g is everywhere dense
in G, we may assume, so far as the relation L L’ is concerned, that
aCg. Then FF'Cg. Moreover, it is evident that dim FF’>k. We can
now repeat the construction described above starting with a suitably
chosen analytic cell of dimension exceeding k2 in FF’. We obtain
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finally an analytic r-cell contained in gM\W. Hence g contains a nu-
cleus of G and hence g =G, a contradiction which proves the theorem.?

CoLuMBIA UNIVERSITY

3 We have proved, incidentally, that if an everywhere dense subgroup g of a simple
Lie group G, (r>1) contains an analytic arc, then g=G.

VECTOR SPACES OVER RINGS
C. J. EVERETT!

1. Introduction. Let M =u K+ - - - +u.K be a vector space (lin-
ear form modul [5, p. 111]) over a ring K = {0, a, B, - - - ; € unit ele-
ment}. By a submodul N <M is meant an “admissible” submodul:
NK =N. Elements #1, - - -, v, of a submodul N form a basis for N
(notation: =K+ - - - 4+9,K) in case Y v,0;=0 implies a;=0,
4=1, - - -, n, and if every element of N is expressible in the form
Zviai, a; K. The equivalent formulations of the ascending chain
condition for submoduls of a vector space, and for right ideals of a
ring will be used without further comment [5, §§80, 97].

2. Basis number, linear transformations. We remark that the fol-
lowing holds.

(A) The ascending chain condition is satisfied by the submoduls of a
vector space I over K if and only if it is satisfied by the right ideals of K.

An infinite chain of right ideals 11 <1s< - - - in K yields an infinite
chain of submoduls %1ty <2< - - - in M. The other implication is
provedin [5, p. 87].

[By using a lemma due to N. Jacobson (T heory of Rings, in publica-
tion) Theorem (A) and the corresponding theorem for descending
chain condition are easily proved in a unified manner. |

Linear transformations of M on I are given by u;—u! = u.ai;.
Write (uf, -+ -, tm )=(u1, - - -, n)d, 4 =(a;;). Under u;—u/}, let
Mo—0. Thus M/Me=MA = IMN. Clearly My=0 if and only if 4v=0
implies v=0, v an m X1 matrix over K, and M4 =M if and only if
there exists an m Xm matrix R with AR=1, the identity matrix.

Possibilities (i) Mo=0 and MA =M; (i) Mo>0 and M4 <IN;
(iii) Mo=0 and MA <M are familiar. The possibility of (iv) Me>0
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1 The results presented here were obtained while the author was Sterling Research
Fellow in mathematics, Yale University, 1940-1941. Thanks are due to Professors
Oystein Ore, R. P. Dilworth, and the referee for helpful suggestions.




