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quence of polynomials whose roots lie on the axis of pure imaginaries 
and which converges uniformly in every finite region. 

H U N T E R COLLEGE 

GENERALIZED LAPLACE INTEGRALS 

R. P. BOAS, JR. 

We consider the linear space §(c) whose elements are functions f(z) 
[z = x+iy] which are analytic for x>c and satisfy 

(i) ƒ 00 

I ƒ 0 + iy) \2dy ^ M, x > c, 
- 0 0 

where the finite number M depends on the function in question. I t 
is well known that an element f(z) of §(c) has boundary values 
f(c+iy) almost everywhere on x=c, and that §(c) is a Hilbert space 
if the norm of ƒ (z) is defined by 

ll/(s)||2= f"\f(c+iy)\2dy. 

Furthermore, it is known [5, p. 8] that if/(s)G:§(V), then ƒ(z) is 
representable as a Laplace integral for x>c, in the sense that there 
is a unique function1 <j>(t) with e~ct(j){t) £L 2 (0 , oo) such that 

(2) lim 
!T->oo J o 

e~-zt<t>{t)dt 0; 

we shall express (2) by writing 

ƒI 00 

e-zt<l>(t)dt, x > c. 

o 
It is easily verified that the integral in (3) converges in the ordinary 
sense for x>c. A Laplace integral may be regarded as a generalized 
power series; the object of this note is to generalize the integral repre­
sentation (3) by replacing e~zt by a kernel g(z, i) which is in some sense 
"nearly" e~zt, just as power series ^anz

n have been generalized2 by 
replacing the functions zn by functions gn(z). 

Presented to the Society, September 5,1941; received by the editors May 24,1941. 
1 Unique, that is, up to sets of measure zero. 
2 For a bibliography of this problem, see [ l ] . 
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We suppose that g(z, i) is, for each fixed t in 0 <t < <*>, an analytic 
function of z in x >c; and that for each fixed z in x >c, g(z, t) £L 2 (0 , R) 
for every R>0. 

THEOREM 1. If for each positive T 

(4) <rcty(0 G £2(0, T) implies f gO, *)0(*)* G § 0 ) ; 
•Jo 

awd i/" there is a number X, 0 <X < 1, such that 

/

'• • s h || /» s 

a(/)[éf-*< - g(z, t)]dt g X I a{i)e~ztdt 
R l| II •/B 

/or a// S > i ? > 0 awd all functions a(/)£Z,2(i?, S), then there exists for 
each f(z)Ç:Sè(c) a unique \p(t) with e~ct\f/(t) £Z,2(0, oo) swcA /Aa/ 

ƒ » 00 

(6) /(g) = I g(s, 0^(0* , * > c, 

where the integral is a mean-square limit for x^c, and also converges in 
the ordinary sense for x>c. 

In Theorems 2, 3 and 5 we shall replace the conditions of Theorem 1 
by more convenient conditions; in Theorem 6 the theory will be ap­
plied to the generalized Laplace integrals recently discussed by Meijer 
[4] and Greenwood [7], namely 

-(7)7. ƒ(*) = [—) J K,(zt)(zt)u*4>(t)dt, 

where Kv(z) is the usual notation for a Bessel function of imaginary 
argument [6, p. 78], and — \ <$t(v) < | (if v= ± J, we have (3) again). 

Theorem 1 is easily proved by the method of successive approxi­
mations used for a similar purpose by Paley and Wiener [5, p. IOO]. 

Letƒ(» G§(V). Then there is a function <£(/) with erc«0(O GL2(0, 00 ) 
such that 

ƒ» 00 

<r«4>(t)dt, x > c; 
0 

here, and throughout the proof, integrals over (0, 00) are taken as 
mean-square limits, as in (2). Then the integral 

exists; for, by (5), 
ƒ' 
J 0 

g0, t)4>(t)dt, x > c, 
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<t>{t)[e~zt - g{z, t)]dt\\ = X I <t>(t)<rztdt 
. R II II J R 

0 

as R and 5—» oo. 
We now define inductively sequences {<t>n(t)} and {fn(z)} by set­

ting 0O(O = 0 ( 0 ; 

ƒ
• 00 /» 00 

0 «^ 0 

and generally 

ƒ» oo 

0 

/•» oo 

/ B + 1 ( s ) = I 4>n{t)[<r''- g(e, t)]dt. 
J 0 Thus 

and by (5) 

(7) 

ƒ* oo n 

0 k=0 

4>n(t)e-*'dt \\=\\\fn\ 
•/ 0 

^ = X"+1 

Consequently 

I / » 00 W 

ƒ(«) - I E **(')«(*, t)dt 
J 0 ft=0 

0, 

0, 

W — > o o . 

W — » o o . 

Now 

and hence 

f 4>»(t)<r-*dt I = ||/.|| = X ^ | | / | | , 
•/ n 

ƒ» oo n 

0 m 

k(t)e~ztdt ^ ZX& + 1 | | / | | - » 0 , w, « - » oo. 

Therefore, since §(c) is complete, there exists F(z)Ç:&(c) such that 

(9) 

and 

•0, 
Il «^ 0 k = 0 I 

/

» oo 

^{t)e~ztdh e-cty(t) G^ 2 (0 , oo). 
n 

n —> oo, 
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If we set 

(10) 

we then have 
11 /* 00 11 

I $n(i)e-ztdt - > 0 ; 
II J o I' 

then by (5) 

!

/» 00 M I I / * 0 0 

I «(*, t)Mt)dt\\ è (1 + X) I e-»4>n(t)dt 
J 0 II II *J 0 

By (10) and (8) we thus have 

/
» 00 

W)g(z, t)dt, 
0 

and the existence of the representation (6) is established. That (6) 
converges in the ordinary sense for x>c follows easily from the fact 
that functions of §(c) are represented by their Cauchy integrals [2, p. 
338]. 

To show that the representation is unique, we have only to show 
that 

0. 

(ID ƒ1 0 0 

«(*)*(*, t)dt = 0, 
0 

x > c, 

implies co(/) = 0 almost everywhere. Now if (11) is true, for every posi­
tive T we have, by (5), 

œ(t)e-ztdt\\ SU \ u(t)[e~zt - g(z, t)]dt + I w(/)g(g, t)dt 
.. 0 Il II «̂  0 II 11 ^ o 

I I CT II II CT II 

I œ(t)e~ztdt\\ + \\ I <»(t)g(z, t)dt\\. 
I J0 II II J0 II 

The limit of the last term on the right is zero, and since X < 1 it fol­
lows that ƒ1 0 0 

o>(t)e~ztdt = 0, 
0 

x > c. 

Since the Laplace representation (3) is unique, co(/) = 0 almost every­
where. 

THEOREM 2. Ifforx>c 

(12) g(M) = *-"{! + *(*,/)} 
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and 

(13) 

ƒ» 00 

e~zuœ(t, u)dut 
o 

/

» 00 

e~zuü)(u)du, 
o 

[April 

# > c, 

x > c, 

h(c) < 1, 

dy 

dy 

then the function g(z, t) has properties (4) and (5), and consequently the 
representation (6) is possible and unique. 

If a(i)Ç:L2(R, 5), we set a*(t) =a(t) in (12, 5) and a*(t) = 0 outside 
(22, 5), and use the Parseval theorem for Laplace transforms; with 
z = c+iy, 

I e~zta(t)h(z, t) dy 

ƒ 00 | /» 00 /» 00 

I e~zta*(t)dt I 6-*ttco(/f «)<*« 
—oo I ^ 0 *^ 0 

/

oo I •» oo /* v 

I ér**<fo I a*(t)œ(t, v - t)dt 
—oo I J 0 " 0 
1 x» oo I /» v 12 

= — I e~cv I &*(/)«(/, » - 0 * ^ 
27T •/ o I J 0 I 

27T J o \ J o I 

ƒ 00 I / • 00 /» V 

I e~zvdv I | a*(0 | <a(v - t)dt 
- c o I J 0 «^ 0 

/

oo I f* oo /» oo 

I e-zi | a*(0 | * I e-zuo)(u)du 
- o o I «^ 0 « J o 

/

oo I /» oo 12 

-oo I J 0 I 

/

oo I /» oo 12 

I *-"| a*(f) \dt\dy 
- o o I J 0 I 

= UO)]2 f f <r"a(t)dl\*dy. 

2 

file:///dt/dy
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Since h(c) < 1 , this gives us (5). But it also implies 

U I f 4>(t)g(z, t)dt 
-oo I J 0 

2 \ 1/2 

U oo I / » r i2 \ l 

i r r r ï1/2 

= - { i + ^ ) } | J |*(/)|v-*«'<»J , 
and hence (4). 

For example, (13) is satisfied, with c = l, if h(z, t)=z/(z2+t2) or 

THEOREM 3. /ƒ A(2, t) is defined by (12) and satisfies 

(14) | * ( M ) | ^ | * ( * ) | * ( 0 , *>c, 

with p(2)| |( /o0 0 | / ( /)l2^)1 / 2=M<(27r)-1 / 2 , /Aerc g(s, /) has properties (4) 
and (5) and the representation (6) is possible. 

In fact, we have 

1 rs 

I a(i)e~zth{z, t)dt 

\J R 

II f ^ 
I a(t)e-zth(z, t)dt 

II J/2 

^ I m I e-c«/(/) I a 
J R 

(0 I * , 

^ ll*(*)|| { f I *(012*} { f *~2c' I «(*) I2*} 
1/2 

II f * II 
^ (2TT)1/V I a{t)e~ztdt L 

'I ^ # II 

This verifies (5) ; and (4) follows because 

II CT II II CT II 
I <*(t)g(z, t)dt\\ = I a(0er*«[l + A(s, 0 ] * 

II «J0 II II «J 0 II 

a(0c-*«* + I a(t)e~zth{z, 
0 M II ^ 0 

S [1 + (2TT)1/V] I a(i)e~ztdt 
v 0 

0* 
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THEOREM 4. If g(z, t) =g*(z, t) for t^s>0; if the representation (6) 
is possible and unique for x>c*, with g(z, i), for every f (z) of&{c*) ; and 
possible and unique for x>c, with g*(z, t),for every f (z) of $(c) (where 
c<c*)y then the representation is also possible and unique for x > c , with 
g(t, z),for every f (z) of&(c). 

We have 

g(z, t)4>(t)dt, x > c*. 
0 

Define 

ƒ» 8 /» 00 /» 00 

g(z, t)4,(t)dt = I g(z,t)*(t)dt = I g*(z,t)t(t)dt. 
The last integral defines F(z) for x>c\ and since the representation 
of F(z) in terms of g*(z> t) is unique for x>c, the integral 

/

00 

g(z, t)*(t)dt 

must represent F(z) for x>c; hence (IS) represents ƒ (z) for x>c also. 

THEOREM 5. Theorem 3 remains true if (14) is satisfied with 
k(z)G®(c) and /(/)<EL2(0, oo). 

If Jfe(s)G#(c) we have 

/

oo 

| £ ( * + fy)|2d;y = 0; 
—oo 

for, if x>c, 

J» oo 

<r*«-*i/ty(/)<ft, e~ct<t>(t) &L2(0, oo ) ; 
0 

and so 

/

oo 1 /* °° 

| * ( * + iy) | 2 ^ = — I e~2xt | </>(/) \2dt -> 0, x -> oo. 
-oo 2ir J o 

Choose 5 so large that 

(17) p(s)|| ( ƒ " | /(*) \*dtj 2 = M < (2x)-i'«. 
Then define h*{z, t)=h(z, t) for />* , h*(z, t)=0 for O g * g s ; and 
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g*(z, t)=e~zt[l+h*(z, / ) ] . The function g*(z, t) satisfies the condi­
tions of Theorem 3, with l(t) replaced by the function /*(/) equal to 
l(t) in (s, oo ) and to zero in (0, s). On the other hand, if b is so large 
that 

U «> W / 2 / /»oo \ 1/2 

| k{b + iy) \2dy\ < I | /(/) \Ht\ < (2TT)-W 

(such a b exists because of (16)), the function g(z, t) satisfies the con­
ditions of Theorem 3 with c replaced by b. Thus the representation (6) 
is possible and unique with g(z, t) for x>b} and with g*(z, t) for x>c. 
Theorem 5 now follows from Theorem 4. 

Let Kv(z) have its usual meaning in the theory of Bessel functions 
[6, p. 78]. 

THEOREM 6.3 If — | < 9 t ( ^ ) < | , then f or every / ( s )&p(0) there is a 
unique \//(t) E;L2(0, oo) such that 

/ 2 \ l / 2 /.oo 

(18) f(z) = f—J I Kv(zt){ztyi^{t)dt, x > 0, 

where the integral is a mean-square limit, as in (2), for x^O, and con­
verges in the ordinary sense f or x>0. 

We shall show that the function (2zt/ir)1/2Kv(zt) satisfies the hy­
potheses of Theorem 5, with c = 0. The following inequalities for Kv{z) 
are valid for $R(s) > 0 [6, p. 219; 3, p. 658]. 

(19) (2z/iryi*e*Kv(z) = R0(z), 

(20) {2z/*yi*e*K9(z) = 1 + Ri(z)/(2z), 

where 
. I COS VIT I 

*>•(*)! ^ I — ^ 7 - r \ , i = o, l. 
cos9î(v7r) I 

If now h(z, t) is defined by 

{2zt/>iryi2Kv{zi) = e~zt[l + h(z, /)] , 

from (20) and (19) we have, with A{v) depending only on v, 

I h(z, t) | S r> I h(z, t) | ^ A(v), x > 0, 0 < / < oo. 
I zt\ 

3 A closely related theorem is given by Meijer [4, p. 603]. Meijer also obtains an 
inversion formula for (18). 
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Hence, with some B(v), 

h(z, t) < T- : •, x > 0, 0 < t < oo, 
1 n - | i + 2 | ( i + /) 

and the conditions of Theorem 5 are satisfied. 
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