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quence of polynomials whose roots lie on the axis of pure imaginaries
and which converges uniformly in every finite region.

HuNTER COLLEGE

GENERALIZED LAPLACE INTEGRALS
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We consider the linear space $(c) whose elements are functions f(z)
[z=x+414y] which are analytic for x >¢ and satisfy

® [ 1t i iy = m, >
where the finite number M depends on the function in question. It
is well known that an element f(z) of §(c) has boundary values
flc+1y) almost everywhere on x =c¢, and that §(c) is a Hilbert space
if the norm of f(2) is defined by

@l = [ | e+ i |aa.
Furthermore, it is known [5, p. 8] that if f(2) E9(c), then f(z) is
representable as a Laplace integral for x >¢, in the sense that there
is a unique function® ¢(f) with e~¢(t) EL2(0, «) such that

(2) lim

T—w

f@) — foTe‘%(t)dtH =0;

we shall express (2) by writing
3) f(2) =f e *tp(t)ds, x> c.
0

It is easily verified that the integral in (3) converges in the ordinary
sense for x >c¢. A Laplace integral may be regarded as a generalized
power series; the object of this note is to generalize the integral repre-
sentation (3) by replacing e~** by a kernel g(z, ) which is in some sense
“nearly” e~2t, just as power series )_a,z" have been generalized? by
replacing the functions 2* by functions g,(2).

Presented to the Society, September 5, 1941; received by the editors May 24, 1941,
1 Unique, that is, up to sets of measure zero.
2 For a bibliography of this problem, see [1].
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We suppose that g(z, t) is, for each fixed ¢ in 0 <{< e, an analytic
function of zin ¥ >¢; and that for each fixed zin x >c¢, g(z, t) EL%(0, R)
for every R>0.

THEOREM 1. If for each positive T'

T

@ ) € 20, T) implies [ (s, Do € $O);

0

and if there is a number \, 0 <N <1, such that

Lsa(t) [e=#t — g(z, t)]dtH fRSa(t)e—ztdt

for all S>R>0 and all functions a(t) EL3(R, S), then there exists for
each f(2) EH(c) a unique Y () with e~y () EL*0, ) such that

(s) |

IA

N

(6) 16 = [ "ot dwioa, 5>
0

where the integral is a mean-square limit for x = c, and also converges in
the ordinary sense for x >c.

In Theorems 2, 3 and 5 we shall replace the conditions of Theorem 1
by more convenient conditions; in Theorem 6 the theory will be ap-
plied to the generalized Laplace integrals recently discussed by Meijer
[4] and Greenwood [7], namely

1) = (%)’ [ e soa

where K,(2) is the usual notation for a Bessel function of imaginary
argument [6, p. 78], and —% <R(») <3 (if »= + 1, we have (3) again).

Theorem 1 is easily proved by the method of successive approxi-
mations used for a similar purpose by Paley and Wiener [5, p. 100].

Let f(2) €9(c). Then there is a function ¢(¢) with e~*'¢ () EL2(0, =)
such that

16 = [ e, %> c;

here, and throughout the proof, integrals over (0, ») are taken as
mean-square limits, as in (2). Then the integral

st noar, >0
0
exists; for, by (5),
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s
l f o () etdt
R

as Rand S— .
We now define inductively sequences { é.(t)} and { fa(2)} by set-
ting ¢o(t) = (1) ;

f:¢<t> [ — g(s, t)]dt|| <)

-0

£i() = f Sl — g, 0t = [ gutean

and generally

fo(z) = f w¢'n(t)6'“dt,

Jui1(z) = fowqﬁn(i) [e==t — (3, #) ]dt.

Thus
16) = funte) = [ 3 outhgtes 0t

and by (5) B
" ol =] [0t | = 2in

< ... =z -, n— ©,
Consequently
(8) ' f(z) — fow gcpk(t)g(z, t)dt“ — 0, n— o0,
Now

| [ s.oearl| =120 =3,

and hence

Therefore, since §(c¢) is complete, there exists F(z) EH(c) such that

©) o - [ iomme-ztdt]

0 k=

[, Seoea] s Savid o man
0 m m

— 0, 7w — ©,

and

o) = [vena, ey € BO, ©).
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If we set

(10) W) = 40 — X 600
we then have -
|

then by (5)
} fo °Qg(z, t)\l«,.(t)dtH s@1+N Hf:e—"wn(t)dtH — 0.
By (10) and (8) we thus have

1) = [ “wtvgte, v,
and the existence of the representation (6) is established. That (6)

converges in the ordinary sense for x >¢ follows easily from the fact

that functions of §(c) are represented by their Cauchy integrals [2, p.
338].

To show that the representation is unique, we have only to show
that

(11) foww(t)g(z, Hdt = 0, x> c,

fwtlx,,(t)e‘”dtll — 0;
0

implies w(t) =0 almost everywhere. Now if (11) is true, for every posi-

tive T we have, by (5),
HfoTw(t)e_udtl < HfOTw(t) [e=t — g(s, £)]dt|| + Hforw(t)g(z, t)dtH
j;Tw(t)g(z, t)dtl'.

S o] 4]

The limit of the last term on the right is zero, and since A <1 it fol-
lows that

IIA

f w(t)e#tdt = 0, x> c
0
Since the Laplace representation (3) is unique, w(¢) =0 almost every-
where.

THEOREM 2. If for x >c¢
(12) gz, 8) = e=t{1 + h(z, 1)}
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with
h(z, t) = f e~ w(t, u)du, x>,
0
| w(t, w)| < w(w),
h(2) =f e~ **w(u)du, x> ¢,
0
and
(13) h(c) < 1,

then the function g(z, t) has properties (4) and (5), and consequently the
representation (6) is possible and unique.

If a(t) EL2(R, S), we set a*() =a(¢) in (R, S) and a*(¢) =0 outside
(R, S), and use the Parseval theorem for Laplace transforms; with
g=c-+1y,

I.

2

f Se‘"a(t)h(z, ?)
R
- f )
g

21ro

1

2

fw “‘a*(t)dtfw —2uw(t, w)ydu | d

a*(t)w(t v — t)dt

—zvdv

0

dv

e‘“’fo a*(Hw(t, v — )dt

A

0 v 2
e‘“’f | a*(t) | w(v — )dt| dv
0

=f:° f ‘“’dvf a*(t)|w(v—t)dt‘
= f_: fo e*t| a*(t) | dt f —ww(u)du2
= ["me f | a0 | at

) 2
f e#t| a*(d) | dtl dy
0

@t [
f: e*ta(t)dt

dy

dy

fIA

—00

ot [

00

I

2dy.


file:///dt/dy
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Since h(c) <1, this gives us (5). But it also implies
© 2 1/2
¥l o
0 T 2 1/2
< {1440} { [ se=al dy}
—o0 (1]

= 51; {1+ h(c)}{ fo ' | 6() !26‘2“0”} "

T
f 6(Dg(a, s

and hence (4).
For example, (13) is satisfied, with c¢=1, if k(z, t) =2/(22+1?) or
1/(z+1).

THEOREM 3. If h(z, t) is defined by (12) and satisfies
(14) | k(z, 1) = | k() | 1¥), x> ¢,

with || k(2)|| (S| 1(t) | 2dE) V2= < (27)~V12, then g(z, t) has properties (4)
and (5) and the representation (6) is possible.

In fact, we have

s 8
f a(t)e=*th(z, t)dt] = ! k(2) I f e=ct(t) | a(t) I dt,
R R

Hf e hte, H
r

< x| { f: | 1(2) |2dt}1/2{ f:e—zc,! o) |2dt}ll2
f:d(t)e—"dt ‘

This verifies (5); and (4) follows because
T
f a(t)e*t[1 + h(z, 1) ]dt”
0

' ﬁTa(t)g(z, t)dt” = ‘
f Ta(t)e—“dt

|
< [+ @]

= (2m)'p

l fo s, t)dt”

fowa(t)e—"dtH.

+
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THEOREM 4. If g(z, t) =g*(z, t) for t =5 >0; if the representation (6)
s possible and unique for x > c*, with g(z, t), for every f(z) of (c*); and
possible and unique for x >c, with g*(z, t), for every f(2) of D(c) (where
¢ <c¥*), then the representation is also possible and unique for x >c, with

g(t, 2), for every f(2) of H(c).
We have

(15) f(2) = fwg(z, DyY(b)dt, x> c*

Define

FE) = 1) — [ ot vt = [ s e = [ gtte, pwioa

8 8

The last integral defines F(z) for x >¢; and since the representation
of F(z) in terms of g*(z, ¢) is unique for x >¢, the integral

[ s i

must represent F(z) for x >c; hence (15) represents f(z) for x >¢ also.

THEOREM 5. Theorem 3 remains true if (14) s satisfied with

k(z2)ED(c) and I(t) EL2(0, «).
If k(2) €H(c) we have

(16) lim I k(x + iy) Izdy = 0;

z— o —

for, if x >c,

)

k(x 4 iy) = f e Wig(ndt,  e'¢(t) € L}0, ©);

0

and so

L) 1 L)
f | k(x—l—iy)l?dy:z——f e2t| ¢(f) |2dt — 0, x— oo.
mJo

—00

Choose s so large that

0 1/2
(1n !Ik<z)H( f Il(t)[2dt> =pu < (2m)12,

Then define k*(z, t) =h(z, t) for t>s, h*(z, t)=0 for 0=¢t<s; and
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g*%(z, t) =e*t[1+h*(z, t)]. The function g*(z, f) satisfies the condi-
tions of Theorem 3, with I(¢) replaced by the function *(¢) equal to
I(t) in (s, ) and to zero in (0, s). On the other hand, if b is so large

that
© 1/2 ) 172
{f | k(b + iy)]?dy} {f ]l(t)[w} < (2m)—u2

(such a b exists because of (16)), the function g(z, ¢) satisfies the con-
ditions of Theorem 3 with ¢ replaced by b. Thus the representation (6)
is possible and unique with g(z, ¢) for x >b, and with g*(z, ¢) for x >c.
Theorem 5 now follows from Theorem 4.

Let K,(z) have its usual meaning in the theory of Bessel functions
[6, p. 78].

THEOREM 6.2 If —3<R(v) <%, then for every f(2) EDH(0) there is a
unique Y (t) EL%*(0, «) such that

(18) 1@ = (3)”2

™

f K, (2t) (zt) Y2y (2)dt, x>0,
0

where the integral is a mean-square limit, as in (2), for x =0, and con-
verges in the ordinary sense for x >0.

We shall show that the function (2zt/7)'/2K,(2t) satisfies the hy-
potheses of Theorem 5, with ¢ =0. The following inequalities for K,(2)
are valid for R(2) >0 [6, p. 219; 3, p. 658].

(19) (2z/m)12e*K ,(2) = Ro(2),
(20) (2z/m)1%e*K,(2) = 1 + Ri(2)/(22),
where
| R | < | — |, i=o1.
cos R(vr)

If now h(z, t) is defined by
(22t/7) 12K, (st) = e*t[1 + h(z, 1) ],
from (20) and (19) we have, with 4(v) depending only on »,

4
|h(z,t)\§£, | h(z, 1) | < AW), £>0,0<t< .

3 A closely related theorem is given by Meijer [4, p. 603]. Meijer also obtains an
inversion formula for (18).
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Hence, with some B(»),
B
YL —
[14+z] (1429

and the conditions of Theorem 5 are satisfied.

| h(z, £>0,0<t<o,
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