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1. The Laplace transformation of the convolution. The generalized 
convolution F*(t) of F(t, t') is defined as follows: 

F*{t) = r F(t - f, f)dt'. 

In case F(t, t') = Fi(t)F2(t'), the function F*(t) is the ordinary convolu­
tion Fi * F2, or Faltung,1 of the two functions F\ and F2. 

Let L {F*(t)} denote the Laplace transform of F* with respect to /, 

er"F*(t)dt, 
o 

and let f(s) denote the iterated transform of F(t, /')> 

ƒ» 00 /» 00 

e-9i'dt' I e~stF{t, tf)dt. 
0 * 0 

It will be seen that 
(2) L{F*(t) } = ƒ ( * ) , 

which, in terms of the inverse Laplace transformation, implies that 

THEOREM. Let F(t, t') he an integr able function oft and t' in every finite 
rectangle O^tST, OSt'ST' and, for some real a, let e~«W) | p{t} t') | 
he hounded f or all t and t' ( / ^ 0 , t'^0). Then if R(s) >a, the integral 
L {F*(t)} is absolutely convergent and satisfies the equation (2). 

Under the conditions stated, the iterated integral in (1) exists if 
R(s) >a and is equal to the absolutely convergent double integral 

ƒƒ 
over the quadrant t^O, t'^0. However, the latter is equal to 
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1 G. Doetsch, Theorie una Andwendung der Laplace-Transformation, Berlin, 1937, 
p. 155 ff. 
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(3) lim f f er»w>F(t, f)d(t, tT), 

where Tk is the triangle bounded by the l ines/ ' = (), / = 0 and t-\-t' — k. 
After the substitutions T = t+t', r '=t f have been made, the integral 
in (3) is transformed into the integral over the triangle bounded by 
the lines r ' = 0, T = T', and r = k in the rr '-plane. Hence (3) can be 
written 

ƒ» h /» r 

e~STdr I F(r - r', T')<*T', 
o *J o 

which is L{F*(t)}. Therefore the equality in (2) holds. 
The convergence of the integral L { | F*(t) | }, that is, the absolute 

convergence of the Laplace integral in (2), follows immediately from 
the absolute convergence of the limit in (3). 

2. The Duhamel integral formula. Let A and X denote the differ­
ential operators defined as follows: 

A{U} =CoU + Y,Ci [Ki ) , 
t==i dxi \ dxi/ 

\{U} = CoU + J^a ; 
i=i dxi 

where the coefficients of U and its derivatives are functions of xi, X2, 
and #3 only. Then, if P denotes an arbitrary interior point (#i, xz, Xz) 
of a region R, and Q any point on the boundary S of R, a general 
boundary value problem for the temperature 27(P, t) in the region R 
can be written 

A{U} +F(P,t), t>0, 

G(Q, 0, t > 0, 

where F, G, and H are prescribed functions. In the second of these 
equations it is understood that X { U(Q, t)} represents the limit of 
X { U(P, t)} as P approaches the point Q on S in a prescribed manner. 
Similarly, in the last equation U(P, 0) is written for U(P, + 0 ) . 

Applying the Laplace transformation with respect to t to the first 
two equations in problem (A) gives, in view of the last condition, 

(A) 

- U{P, t) 
at 

U(P, 0) 
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su(P, s) - H(P) = A{u(P, S) } + f(P, s)9 

M«(&*)} =g(Q,s), 

where u, ƒ, and g are the transforms of U, F, and G, respectively. 
Let the temperature function V(P, t, tf), depending on the fixed 

parameter /', be the solution of problem (A) when the source function 
F and the surface-temperature function G have at each point of R 
and 5, respectively, the constant values F(P, t') and G(Q, / ' ) • Then 

~ V(P, /, /') = A { V(P, t, t')} + F(P, *'), 

( B ) X { 7 ( 6 , U ) } = G ( & 0 , 
F(P, 0, *') = Ü(P). 

Also let Î / (P , s, t') represent the Laplace transformation of V(P, t, t') 
with respect to t, and v(P, s) the iterated transform of V(P, t, t') with 
respect to / and t'. Then applying the transformation with respect to /, 
it follows from (B) that 

sv(P, s, /') - H{P) = A{v(P, S, 0 } + —HP, O . 

and consequently, on applying the transformation with respect to / ' 
to these equations, that 

sv(P, s) H(P) = A{ZJ(P, S)} + —f(P, s), 

s s 
(B') i 

x{««2.*)} = —*(G,*)-
S 

Upon multiplying each member of the equations in (B') by s, it is 
at once evident that the problems (A') and (B') are equivalent and 
that the function sv(P, s) is a solution of (A'). Thus, assuming that 
the solution of (A') is unique, it follows that 

(4) u(P, s) = sv(P, s). 

According to equation (2), 

V[P, s) = ZJF*(P, /)} = d ƒ ' 7 (P , t - r, r)rfr| . 
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Moreover, since F*(P, 0) = 0 , 

(dV*) 

Hence it follows from equation (4), on performing the inverse trans­
formation, that 

(5) U(P, /) = — f F(P, t - r, r)dr. 

The solution of the problem (A) with variable source and surface condi­
tions is therefore given by formula (5) in terms of the solution of the 
problem (B) with constant source and surface conditions. 

Sufficient conditions can, of course, be given in order to justify all 
of the steps in the formal derivation of (5). However, more relaxed 
conditions can be obtained in particular cases by verifying directly 
that the function given by (5) is a solution of problem (A). When the 
latter procedure is applied to the above general case, it is seen that the 
foregoing result in italics is true, provided that V, dV/dx, d2V/dx*, 
and their derivatives with respect to t are continuous functions of 
P , t, and / ' interior to R when t^O and / ' ^ O , and that the function 
(d/d/)/o\{ V(P, t — r, r)}dr is continuous with respect to P at the 
points Q when / > 0. 

The relation (5) is known in the theory of heat conduction as 
Duhamel's integral formula.2 I t has been shown above that this for­
mula applies to a very general temperature problem. It is clear that 
the procedure can be applied in case of discontinuous media, and to 
other boundary value problems as well. It is, of course, applicable to 
problems with partial differential equations of higher order than the 
second. 

3. Resolution of temperature problems. I t will now be shown that 
the general problem (A) can be further resolved into still simpler 
problems which are of two basic types. It should first be observed 
that the solution of problem (B) can be written 

(6) V(P, t, t') = 7i(P f O + F2(P, /, O + W(P, /, t), 

where Vi, Vi, and W are solutions of the problems: 

2 J. M. C. Duhamel, Memoir sur la méthode générale relative au mouvement de le 
chaleur dans les corps solides plonger s dans des milieux dont la température varie avec 
le temps, Journal de l'École Polytechnique, vol. 14 (1830), pp. 20-77; also see H. S. 
Carslaw, Conduction of Heat, 1921, pp. 16-19. 
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- f 7 , ( P , * , O = A { 7 1 ( P , / , < 0 } , 
(b) at 

MVt{Q, t, t')) = o, vt(p, o, o = H(P) - ^ (P , O; 
and 

— W(P, t, t') = A{W(P, t, /')} + F(P, O , 

X{ ïF(Q, / ,0} = 0 , TF(P, 0 , 0 = 0. 

In terms of the transform w(P, s, t') of W(P, t, t'), the last of the 
foregoing problems becomes 

sw(P9 s, O F(P, t') = A {w(P, 5, O }, X { w(Q, s, I')} = 0. 
s 

On multiplying each member of these two equations by s, it is im­
mediately evident that the function sw(P, s, tr) is a solution of the 
transform of the following problem: 

~Vs(P,t,(')=A{Vs(P,t,t')}, 
(c) dt 

Mv3(Q, t, t')} = o, r,(p, o, o = F(P, f). 
Therefore, if Vs(P, s, t') denotes the transform of Vs(P, t, t'), then 
w = vi/s and, consequently, 

(7) W(P, t, t') = f VS(P, r, l')dr. 
J o 

According to equations (5), (6), and (7), the solution of problem 
(A) is given in terms of the solutions Vi, V2, and F3 of the problems 
(a), (b), and (c), respectively, as follows: 

U(P, *)=-(' \vl(P, r) + F2(P, t-r,r) 
dtJo L 

which can be written 

U(P, 0 = Fx(P, 0 + — f W , / - r, r)Jr 

( 8 ) 

+ r F 3 (P, < - r, T)<*T. 
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Problems (b) and (c) are variable state problems of the same type in 
which the initial condition alone is nonhomogeneous. On the other 
hand, (a) is a steady state problem. The general temperature problem 
(A) is thus resolved by formula (8) into the solution of problems of two 
basic types, one of steady state, the other, of variable state. 

4. Resolution of vibration problems. A general form of the problem 
of displacements in elastic media with variable boundary conditions, 
including forced vibrations of membranes, shafts, and strings, can be 
written 

— HP, t) + b — *(P, t) = A{HP, t)} + F(P, t), 
at1 dt 

(C) X{*(Q,*)} =G(Q,t), 

d 
HP, 0) = H(P), — $(P, 0) = 7(P). 

dt 

As before, P denotes a point in a region R, and Q a point on the bound­
ary of R; F, G, H, I, and b are prescribed functions, b being a function 
of P alone. The resolution of this problem can, as in the case of the 
foregoing temperature problem, be easily obtained by formal applica­
tion of the Laplace transformation. The problem corresponding to (C) 
in </>(P, s), the transform of <Ï>(P, 0» *s 

(C) (*2 + hs)<^P' *) - (* + W P ) ~ Z ( P ) = A(<KP> S) } + f(P, s), 

X{<KQ, s)} =g(Q,s). 

Let the function @(P, /, tf), depending upon the fixed parameter tf, 
be the solution of problem (C) when F and G have at each point the 
constant values F{P, tf) and G(Q, t'), respectively, that is, 

©(P, t, t') + b — Q(P,t,t') = AÎ@(P, t, t')} +F(P, t'), 
dt2 dt 

(D) X { 0 ( e , / , O } =G(Q,0, 

d 

@(P, o, f) = H(P), — e(p, o, o = I(P). 
dt 

If 0(P, s) is the iterated transform of @(P, /, tf), it follows from (D) 
that sd satisfies the equations ( C ) . Therefore, 0 (P , s) =s6(P, s) and, 
according to (2), we have the formula 

d rl 

(9) $(P, /) = — I 0 (P , t - T, r)dr 
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Repeating the procedure of the preceding section, it is seen that 

@(P, /, O = ©x(P, I') + ©2(P, *, O + f ©3(P, r, O^r, 
J o 

where @i, ©2, and ©3 are the solutions of the following problems, re­
spectively, 

(d) A x ©X(P, O} = 0, X {©!(e, O } = G(Q, f) ; 

—@ 2 (p , /, o + b—@2(p, t, o = A {@2(p, /, o } , 

(e) A{©2(<2, /, 0 } = 0, @2(P, 0, O = E{P) - @!(P, O, 

- -© 2 (P ,0 ,O = / ( P ) ; a/ 

— @3(P, *, O + b — ©3(P, /, O = A {©3(P, *, O }, 

(f) x{e,(e, *,*')} =o, ©3(P, o ,o = o, 

— @3(P, o ,o = P ( P , O. 
a/ 

Therefore, in view of (9), 

$(P, 0 = 0X(P, /) + — f ©2(P, * - r, T)<*T 
d/Jo 

(10) 

+ f ©3(P, * - r, T)JT. 
Jo 

Thus the solution of the general problem (C) is resolved into the solution 
of the two basic types (d), and (e). Problem (f) is a special case of (e). 
The latter can, of course, be still further resolved into two simpler 
problems, one being of the same form as (f) with the second initial 
condition nonhomogeneous, and the other having the nonhomogene-
ity occurring in the first initial condition. 
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