CORRECTION TO "TOTALLY GEODESIC EINSTEIN SPACES"¹

AARON FIALKOW

The coordinate system (p. 427) in which $H = x^n$ for some fixed value of y and $f_{n\lambda} = 0$ exists if and only if $f^{ij}H_{,i}H_{,j} \neq 0$ for this value of y. Hence Theorem 3.1 is valid only if this inequality holds. The remaining case, namely,

$$(3.15) f^{ij}H_{,i}H_{,j} = 0$$

for every y can arise only if c=0, as may be seen by differentiating (3.15) covariantly with respect to k and using (3.7). We note that, in accordance with (3.8) and (3.9), c=0 implies that a=b=0. To obtain the analogue of Theorem 3.1 for the case in which (3.15) holds, we proceed in a manner analogous to that in H. W. Brinkmann, loc. cit., pp. 131–135 or A. Fialkow, *Conformal geodesics*, Transactions of this Society, vol. 45 (1939), p. 473. By these methods, we find a coordinate system such that $H=x^n$ for a fixed value of y and

$$f^{ns} = 0,$$
 $f^{nn} = 0,$ $f^{(n-1)n} = 1,$ $f_{t(n-1)} = 0,$ $f_{(n-1)(n-1)} = 0,$ $f_{(n-1)n} = 1,$

where $s, t=1, 2, \dots, n-2$. In this coordinate system, the characteristic condition (3.7) becomes $\partial g_{ij}/\partial x^{n-1}=0$. (In the Transactions paper, this last equation appears incorrectly as $\partial g_{st}/\partial x^{n-1}=0$.)

If the f_{ij} are to be the components of the metric tensor of an Einstein space E_n , then, as was shown by Brinkmann, the first fundamental form of E_n may be written as

(3.16)
$$f_{st} = h_{st}(x^s, x^n), f_{sn} = 0, f_{nn} = 0,$$

$$f_{(n-1)n} = 1, f_{s(n-1)} = 0, f_{(n-1)(n-1)} = 0,$$

where $h_{st}dx^sdx^t$ with x^n constant is the first fundamental form of an Einstein space E_{n-2} of zero mean curvature, and the components of the tensor h_{st} satisfy certain partial differential equations. According to Brinkmann, the conditions (3.16) are the necessary and sufficient conditions that E_n be conformal to another Einstein space by means of a transformation $d\bar{s} = \sigma ds$ with $\Delta_1 \sigma = f^{ij} \sigma_{,i} \sigma_{,j} = 0$. We note that the most general solution for H of the form $H = H(x^n, y)$ is given by (3.13). Now this solution $H(x^n, y)$ must involve x^n by the hypothesis

Received by the editors April 4, 1941.

¹ This Bulletin, vol. 45 (1939), pp. 423-428.

of §3 and must also depend upon y since $g^{\alpha\beta}H_{,\alpha}H_{,\beta}\neq 0$ and, according to (3.1) and (3.15), $g^{\alpha\beta}H_{,\alpha}H_{,\beta}=g^{(n+1)(n+1)}(\partial H/\partial y)^2$. Hence the first fundamental form of the E_{n+1} which contains the ∞^1 isometric E_n 's is

$$ds^{2} = f_{ij}dx^{i}dx^{j} + e[\alpha(y)x^{n} + \beta(y)]^{2}dx^{n+1^{2}}$$

where the f_{ij} satisfy (3.16) and $\alpha \neq 0$ and $(d\alpha/dy)^2 + (d\beta/dy)^2 \neq 0$. These remarks show that Theorem 3.1 must be modified in the case where (3.15) holds so that the phrase " $\Delta_1 \sigma \neq 0$ " is replaced by the phrase " $\Delta_1 \sigma = 0$." Both cases may be included in the theorem:

THEOREM. A one-parameter family of isometric E_n 's may be imbedded as ∞^1 nonparallel, totally geodesic hypersurfaces of an E_{n+1} if and only if each E_n may be mapped conformally on another Einstein space. If a and b are the mean curvatures of E_{n+1} and E_n respectively, then nb = (n-1)a.

BROOKLYN COLLEGE