
A PROBLEM IN PARTITIONS1 

MARSHALL HALL 

Let m objects x\f • • • , xm be given and from these n non-void sub­
sets #i, • • • , an be formed. This partition will determine a matrix (a*,-) 
in which 0^7= 1 if ai and a3- have a non-void intersection and aij = 0 
if ai and ay are disjoint. Necessarily (at/) is a symmetric matrix with 
Ts on the main diagonal. The following question has arisen in 
Ore's investigation of the theory of relations: Is every matrix (a»y), 
i,j = l, • • • , fly with au = 1, a»-,- = a/» = 0 or 1 the partition matrix of n 
objects into n non-void subsets? As will be seen presently, the answer 
to this question is in the negative. The reason is not that there is any 
inherent contradiction within certain matrices but that it is not al­
ways possible to find a partition of as few as n objects determining 
a given matrix. 

The answer is affirmative for n = 1, 2, 3, 4 as may be found by di­
rect calculation, but is negative for n^S. I t is almost trivial that for 
n^3, m = (n2 — n)/2 objects will suffice. Take (n2 — n)/2 objects 
Uij = Uji, iy^j, i, J = l, • • • , n, and assign un to both a* and a,- if 
aa= 1 and discard Un if a*j = 0. This will leave certain subsets ar- void 
for which an = 1, an^Oifj^i, and for these we introduce new objects 
Ui in ai alone. If there are one or two such i's we have discarded at 
least two Ui/s since n^3. If there are s^3 such i's we have discarded 
at least s(s —1)/2 «»/s, namely those with both subscripts from this 
set. In all events we have discarded at least as many objects as we 
have added and we have a partition of (n2 — n)/2 or fewer objects 
into n non-void subsets corresponding to the prescribed partition ma­
trix. But it is clear that this number m = (n2 — n)/2 is too high for 
n>3 since the full number of objects is used only if every an= 1 and 
in this case a single object assigned to every subset will suffice. 

THEOREM 1. A given matrix (a^), i,j = l, • • • , n, in which au = l, 
ötj = ajt = 0 or 1, is the partition matrix of a set of at most n objects for 
n = l, 2, 3, 4 and of at most n2/4 (n even and w ^ 4 ) or (n2 —1)/4 (n odd 
and n^5). 

PROOF. Evidently renumbering the subsets makes no difference in 
the problem. This operation corresponds to permuting both the rows 
and columns of the matrix, the same permutation being applied to 
both. Such an operation defines an equivalence on the matrices. The 
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non-equivalent matrices of orders 2 and 3 are 
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Those of order 2 require 2 and 1 objects respectively and those of 
order 3 require 3, 2, 2, and 1 objects respectively. There are eleven 
classes of matrices of order four of which only two, 
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require as many as four objects. Four classes require three, four 
classes require two, and one requires one. 

Proof for n = 5. If atJ = 0 for j^i, the matrix requires exactly five 
objects, one in each subset. If some a»/= 1 renumber to make this #12, 
and suppress the first two rows and columns. The remaining matrix 
for a$, &4, &nd as will require at most three objects, and only two unless 
034 = 035=^45 = 0. Now take four objects un, u%, u±, u^. Assign w», 
i = 3, 4, 5, to a\ and at- if au = 1 and to #2 and a* if #2; = 1, and discard 
it if aii = a2» = 0. If there is an i for which a u = a 2 l = 1, then Ui is com­
mon to both a\ and a% and we may discard W12. If not assign u^ to 
both a\ and #2. These four objects and those used for the matrix for 
#3, a4, #5 realize the partition with at most six elements save in the 
case in which exactly one of au, a<u is 1 for i — 3, 4, 5 and a34 =#35 =#45 
= 0. Now we may discard the elements placed in 0-3, «4, a& originally 
and the partition is realized using only the four elements ^12, u%, u^ 
and u$. 

Proof f or n^6. If an = 0 for J9*i we assign a single element Xi to 
each subset ai and realize the partition with exactly n objects. If 
some an— \,ji£i, renumber so that this is au. Now suppress the first 
and second rows and columns. We have a partition matrix for n — 2 
subsets which, by an induction hypothesis, may be realized with at 
most (w —2)2/4 or [(w —2)2 —1]/4 objects, depending on whether n 
is even or odd. We now use w — 1 new objects ^12, u$, w4, • • • , un . We 
assign uu to both a\ and a2. For i ^ 3 if an = 1, a2t = 0 we assign ui to #i 



806 MARSHALL HALL [October 

and ai. If au = 0, a2i = l we assign m to a2 and a\. If #ii = #2i = l we 
assign Ui to ai, a2, and a*. If aii = a2i = 0 we discard Ui. This yields a 
realization of the prescribed partition, using at most n — 1 more 
objects. Since (n-2)2/4:+n-l = n2/4 and [ ( r c - 2 ) 2 - l ] / 4 + r c - l 
= (w2 —1)/4, the truth of the theorem for n — 2 implies the truth 
for tiy and the truth of the theorem for w = 4, 5 completes the proof 
by induction. 

We note that the new objects used are never assigned to more 
than three subsets. For n = S this is also true, and for w = 4 an ob­
ject may be assigned to all four subsets only if every an is 1. But here 
four objects um, Um, um, u^i assigned respectively to the three ap­
propriate subsets realize the partition. Hence it is never necessary to 
assign an object to more than three subsets. 

THEOREM 2. Ifn = 2s is even, the symmetric matrix (an) with an = 1 ; 
dij = 0 for J9^i and i, i = l, • • • , s; a*/=l for i = l, • • • , s, and 
j = s + l, - - • , 2s; a*7 = 0 for j>i and i, 7 = 5 + 1, • • • , 2s, is the parti­
tion matrix of n2/4: but no f ewer objects. If n = 2s+ 1 is odd, the matrix 
(an) with an = ly an = 0 for j>i and i, i = l, • • • , s; an—1 for 
i = l , • • • , 5 and j = 5 + l, • • • , 25 + 1; #»•,• = 0 for j>i and i, j = 
5 + 1, • • - , 2^ + 1, is the partition matrix of (n2 —1)/4 but no f ewer ob­
jects. A partition matrix of order n^5 requiring n2/4: objects (n even) 
or (n2 —1)/4 objects (n odd) is equivalent to the appropriate matrix above. 

PROOF. In any partition if an object x belongs to as many as three 
subsets a», a y, a*,, then in the partition matrix we have an = a%k = a jk = 1. 
But in the above matrices Osij aik — 1 (i, j t k different) always imply 
ajk = 0. For if i ^ 5 and an = a^ = 1, then j^.s + 1, k^s + 1 and a,$h — 0 ; 
and iî i^s + 1, aa = aik = l then j rgs, k^s and 0^ = 0. Hence the mat­
rices above must come from partitions in which no object appears 
in more than two subsets. Thus in these matrices each 1 above the 
main diagonal corresponds to at least one object in common to two 
subsets and these objects must all be different. Hence these are the 
partition matrices of n2/4 or (n2 —1)/4 objects but no fewer. 

Consider a matrix (an), n^5, requiring the maximum number of 
objects. If some aa—1 and all aty = 0, j^i, then we may adjoin a 
single element for ai to a partition for the remaining n — 1 subsets 
and have a partition with less than the maximum number of objects. 
First suppose n ^ 6. In the proof of Theorem 1 for n ^ 6 note that if 
#11= #21 = 0 we discard Ui and have fewer than n — 1 new objects to 
adjoin. Also if aii = a2l = l we may discard uvt since Ui is an object 
common to both a± and a2. In these cases the partition requires fewer 
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than n2/4: or (w2 —1)/4 objects. Since, by renumbering, any triple 
i,j, k may be taken into 1, 2, i, it follows that in a matrix requiring 
the maximum number of objects exactly two of a»/, «a, a3-k must be l 's 
and the third must be 0 or all three must be 0. For a nonvanishing 
triple renumber so that the common subscript of the two l 's is 1 and 
so that the first row is of the form an = 1, au: = 0, i = 2, • • • , /, a u = 1, 
i = / + l, • • • , n. Here t^n — 2 since there are at least two l 's in this 
row. Now a»7 = 0 if j^i, i, j*zt + l, since otherwise au, ai,-, an would 
all be l 's. Also a»,-=l if i^t, jgit+1, since au = 0, a i / = l . Finally 
an = 0 if j y*i and i,j^t. For ani = 1, an,- = 1 by the preceding argument. 
This completely determines the matrix which has a rectangle con­
taining t(n — t) l 's in the upper right-hand corner and also in the lower 
left-hand corner but 0's elsewhere apart from the main diagonal. By 
placing objects u%j in a* and ay if a», = 1, jy^i, we may realize this par­
tition using t(n — t) objects. These objects are certainly different since 
none may be in three subsets. If n~2s is even t(n — t) <n2/A unless 
t — s which yields the matrix of the theorem. If w = 2s + l, t(n — t) 
<(n2 —1)/4 unless t = s or 5 + 1. t = s yields the matrix of the theo­
rem, while t = s + l yields an equivalent matrix. The permutation 
(1, »)(2, n — \) • • • ( $ , s + 1) of the rows and columns interchanges 
these two matrices. 

Finally suppose n = S. Here (n2 —1)/4 = 6. Suppose for some triple, 
say 1, 2, 3, ai2 = ai3 = a23 = l. Then as in the proof of Theorem 1 for 
n = 5,*to a partition of objects for a3, a4, a5 we need add at most three 
objects. If these three subsets required only two objects, we have 
used at most five objects for the entire partition. If they required 
three objects, then a34 = a35 = a45 = 0 and we may discard the object 
originally placed in a3 and have a complete partition using at most 
five objects. Hence there is no triple i, j , k for which aij = aik = ajk = 1. 
Similarly if for some triple, say 1, 2, 3, ai2 = l, ai3 = 0, a23 = 0 we need 
to add at most three objects to the partition for a3, a4, a5 and if this 
requires three objects then either someone of the old objects may be 
discarded or one of the new objects is discarded. Hence if an = 1, one 
of ai3, a23 is 1 and the other 0. From here the proof as for w ^ 6 applies. 
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