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If a normal simple algebra A has a special structural property, it 
is of interest to inquire whether every finite scalar extension AK also 
has this property. We shall make such an inquiry here where the 
property assumed for A is equality of exponent and index. 

I t suffices to consider only separable and purely inseparable fields 
K. Roughly stated, our result for separable extensions of finite de­
gree is that preservation of the property in question depends only on 
whether it is preserved for scalar extension fields which are cyclic of 
prime degree. In the case of purely inseparable extensions the problem 
is immediately reducible to the case of such extensions of prime de­
gree p, where p is the characteristic of the field. There remains the 
question whether such extensions always preserve equality of expo­
nent and index, and we shall answer this question in the negative by 
means of an example. 

Every ^-algebra over a field of degree of imperfection2 unity has 
equal index and exponent.3 The example mentioned above, however, 
shows that for every integer r > 1 there exists a modular field of de­
gree of imperfection r such that not all the ^-algebras (p = 2) over this 
field have exponent equal to index. 

1. Exponent reduction factor. If A is any normal simple algebra 
of exponent p over F, the exponent of any scalar extension AK is a 
divisor a of p = O T . The integer r may be called the exponent reduction 
factor of A relative to K. This concept is analogous to that of index 
reduction factor and gives rise to a theorem analogous to that for in­
dex reduction factors. 

THEOREM 1. Let A be a normal simple algebra over F} and K bean 
algebraic extension of degree q over F. Then the exponent reduction fac­
tor of A relative to K is a divisor of q. 

PROOF. The direct power A" has exponent r and K as splitting 
field. Now r divides the index fi of A*, and JU, divides the degree q of 
the splitting field K. Hence r divides q. 

1 Presented to the Society, April 12, 1940. 
2 For the concept of degree of imperfection see §3 of O. Teichmuller, p-Algebren, 

Deutsche Mathematik, vol. 1 (1936), pp. 362-388. 
3 Cf. O. Teichmuller, op. cit., p. 384. See also A. A. Albert, p-algebras over afield 

generated by one indeterminate, this Bulletin, vol. 43 (1937), pp. 733-736. 
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COROLLARY. If the degree q of K is prime to the exponent of A, the 
scalar extension AK has the same exponent and index as A. 

For purely inseparable fields K the following result is stronger than 
that of Theorem 1. 

THEOREM 2. The exponent reduction factor of A relative to a purely 
inseparable field K is a divisor of the exponent of K. 

PROOF. NOW -Fhas characteristic p, K has exponent pa and degree pb 

over F, and A =BXBi where B has exponent pe and B\ has exponent 
prime to p. We have p=pem = ar, where a is the exponent of AK. By 
Theorem 1, r is a power of p so that <r = pfm, BR has exponent pf

) and 
T = pe~f. Hence BK has a purely inseparable splitting field L of expo­
nent pf over K. Now L splits B and is purely inseparable of exponent 
at most pf+a over F, whence it follows that pf+a^pe, and pa^pe~f = T, 
as desired. 

2. Separable extensions. In view of the fundamental result on the 
factorization of a normal division algebra corresponding to the fac­
torization of its degree, it is completely sufficient to consider algebras 
of prime-power index pe, and we shall do so. We begin with a known 
tool theorem4 on fields. 

LEMMA 1. Let K be a separable field of degree peg over a field W, with 
g prime to p. Then K is contained in a field L of degree peh over W, with 
h prime to p, such that 

(1) L= Le> Ze_i > • • • > L0 à W, 

where Li is cyclic of degree p over Z,t_i (i = 1, 2, • • • , e) and L0 is separa­
ble of degree h over W. 

This result will now be applied to algebras. 

THEOREM 3. Let F be afield, p a prime, and W any separable finite 
extension of F. Every normal simple algebra A of index pn and exponent 
pn (n variable) over every such field Whas the property that the index and 
exponent of AK are equal, for every separable field K of finite degree over 
W, if and only if this is true for every field K which is cyclic of degree p 
over W. 

4 Cf. the proof of Theorem 31, Chapter IV of A. A. Albert, Structure of Algebras, 
American Mathematical Society Colloquium Publications, vol. 24, 1939. A brief proof 
is obtainable as follows. The field K is contained in a normal field N of degree prh over 
W, h prime to p. Then N is normal over K and contains a Sylow subfield L of degree 
hg"1 over K, degree peh over W. Hence N is metacyclic over a subfield L0, and we have 

( i ) . 
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PROOF. We simply apply Lemma 1 and Theorem 1. Since the de­
gree of L over K is prime to p, the index and exponent of AK are the 
same, respectively, as those of AL. NOW A L= (A L Q ) L and A L Q has in­
dex and exponent both equal to pn since L0 has degree h over W. By 
assumption ALX has equal index and exponent. But L\ is a separable 
finite extension of F and L2 is cyclic of degree p over L\ so that AL2 

has equal index and exponent. A finite number of steps of this sort 
completes the proof. 

Every finite extension of a field W has the form 

(2) Q = Qt > Qt-x > • • • > <2o = K^W, 

where each Qi is purely inseparable of prime degree q over Q»_i, q the 
characteristic of F, and Q0 is separable over W. If q^p, the index and 
exponent of AQ are the same as those of AK, the type of scalar exten­
sion considered in Theorem 3. If q = p, we obtain an analogue of 
Theorem 3, applying to all finite extension fields Qf by allowing W 
to vary over all finite extensions of F, and assuming that A Q has equal 
index and exponent not only for all fields Q which are cyclic of degree 
p over W but also for all fields Q which are purely inseparable of de­
gree p. I t follows that every AQ has index equal to exponent, Q any 
finite extension of F. 

3. Purely inseparable extensions. Let P be either the prime field 
of characteristic two or a field obtained from this prime field by ad­
junction of a finite number of independent indeterminates. Let Xo and 
x be independent indeterminates over P , and F = P(x0j x). We shall 
construct an example of a cyclic algebra 

(3) D = (Z, S, x0x) 

over F with the properties described in Theorem 4 below. 
To select the cyclic extension Z we first consider F0 = P(x0). The 

equation X2 = X+x 0 is irreducible over JF0» hence defines5 a cyclic field 
Yo = Fo(0 of degree two over JF0, and Fo is contained in a field Z0 

which is cyclic of degree four over Fo. Now Z = Z0(x) is cyclic of de­
gree four over F=F0(x) and Z contains F = Y0(x). Any generating 
automorphism S of Z0 over Fo may be regarded as a generating auto­
morphism of Z over F. 

If the exponent of D = (Z, 5, x0x) were less than four, we should6 

have D2~(Y, 5, x0x)~l so that xQx would be a norm in F over F, 

5 For the theory of cyclic fields used in this section see Chapter I X of A. A. Albert, 
Modern Higher Algebra, Chicago, 1937. 

6 Albert, Structure of Algebras, chap. 7, Theorem 14. 
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contrary to the fact that x is an indeterminate over F0. Hence D has 
exponent and index four and D is a division algebra. 

The field K = F(j),j2 = x, is purely inseparable of degree two over F 
and 

(4) DK = (ZK, S, X0X). 

Now Y=F(%),%2 = £+x0 and, letting Yx= YXK, we have X0 = NY\F(Ç) 

^NY^R^), XOX = NY1\K(^J)- The exponent of DR is thus at most two 

while by Theorem 1 it is at least two; hence it is equal to two. How­
ever, when the extension Z0 is appropriately chosen we may show by 
a matric representation of D that DK has index four. To make the 
required proof we need only show that K is not equivalent over F 
to a subfield of D. 

In order to select Z0 we prove 

LEMMA 2. The extension Z0 over F0 may be chosen so that x0 is not a 
norm with respect to Z0 over F0. 

We have 

(5) Zo = 7ofo), v2 = v + xoï + w, 

where w in F0 is at our choice. We shall choose w=l. Suppose 
XO = NZ0\Y0(Z), z in Z0. Then % cannot be in F0 for, if so, z2 = x0 whereas 
Fo contains no quantities inseparable over F0. Hence z = ai(b+rj) with 
aiT^O, ai and b in F0, X0 = NZ0\Y0(Z) = a?(b2+b+Xo£ + l)and, if a = arx , 

(6) b2 + b + x0£ + 1 = x0a
2. 

Letting a=ai%+a2l &=ft£+ft with ai and ft in F0 we find that (6) 
is equivalent to the pair of equations 

2 2 

ft + Pi + %0 = «1*0, 
(7) 2 2 

ft + 02 + 1 = *o(«2 + 01 + tfo). 
Let 

(8) a,- = /x*/£*-> ft = Vi/biy i = 1, 2, 

be expressions for the at- and ft as quotients of relatively prime poly­
nomials in P[XQ] with denominators 8* and 8/ all monic (i.e., having 
leading coefficients unity). Substituting in (7i) we find that 8/ = Si so 
that (7i) is equivalent to 

2 2 2 

v\ + v±8i + *o8i = #oMi-

This equation shows that h is prime to XQ. 
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Now substituting from (8) in (72) we are led to the equation 

2 / /2 /2 2 2 2 2 
(9) V2 + V2h + h = 0CQÔ2 G M l + ^ 2 + X0Ô1Ô2)/ô2Ôi. 

We observe from (9) that b% divides XoSiS/2, and since Si is prime to x0, 
it follows that if ô2 has a factor x0 so does §2'. Thus in any case the 
right side of (9) is a polynomial divisible by XQ. If the constant terms 
of *>2 and ô2' are v and ô, respectively, we see then that the left side 
of (9) has constant term J>2+J>Ô + Ô2 = 0. Further, v and ô cannot both 
be zero since V2 and ô2' are relatively prime. The equation X2+X + 1 = 0 
thus has a solution À = z>ô~1 or X = bv~l in P . On the other hand this 
equation has no solution in the field P , and this contradiction estab­
lishes the lemma. 

THEOREM 4. There exists a cyclic algebra D of index and exponent 
four over an appropriate field F of characteristic two, and a purely in­
separable extension K of degree two over F, such that DK has index four 
and exponent two. 

To make the proof we first represent D = (Z, 5, XQX) by a set of four-
rowed matrices with elements in Z. We have D = Z+uZ-\-u2Z-\-uzZ, 
uA = x0x, and zu — uz8 for every z of Z. If 

(10) v = £0 + uz\ + u2Z2 + uHz, Zi inZ, 

is any quantity of D and U is the vector (1, u, u2, uz)y then vU=Uv 
where v is the matrix 

s s s \ 
XX0Z3 XX0Z2 XXQZI 

s s2 s3 

ZQ XXoZs XX0Z2 
s „ s» sz 

Si Z0 XXQZZ 

s s2 s3 

Z2 Z\ ZQ J 

The correspondence v—>v is an equivalence over F (when we identify F 
with the field of four-rowed scalar matrices over F) of D with the set 
of matrices v. Note that the quantities v — z^ in z correspond to di­
agonal matrices, diag {z0, ZQ, sjf, zf}, such that |u| =NZ\Y(ZO). For 
this norm we shall use the simpler symbol N(zQ). 

Suppose that D contains a subfield equivalent over F to Ky that is, 
D contains a quantity v such that v2~x. Then v2 — x, \v2\ =#4 , and 
\v\ =x2. Every Zi in (10) has the form Zi = Sitrx where Si and ti are in 
the polynomial domain Zo[x] and are relatively prime. Also, N(si) 
and N(ti) are in F0 [x]. 

(ID v = 

zo 

21 

Z2 
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Let xm be the highest power of x occurring as a factor in the denomi­
nators ti. Then w = vxm = zd +uz{ +u2z2' +uzzd , z[ =ZiXm = sj (tl)"1, 
ti prime to x (i = 0, 1, 2, 3), and w corresponds to a matrix w = vxm 

all of whose elements have denominators prime to x. Further, 
| w\ = | v\ x4m = x2+4m, and iV(// ) is in F0 [x] and is prime to x. 

We shall prove m = Q. Assuming ra>0 we have 

(12) | w | = *2+4- = tf (*o;) + **<£ = — — J + **°ö' 

where Q may be written as a quotient of polynomials in x with de­
nominator prime to x. From the equation, 

(13) N(td)x2+*™ = N(s{) + xxoQ-NW), 

we see that x is a factor of N(sd), hence of sd. This result implies 
that xm is not a factor of /o. Using sd =xsd' in the matrix w we find 

, , N(s{) 
(14) I w I = x2+Am = — xxo + x2<2i, 

iV(/i ) 
and as above we deduce that s{ =xs{' with Si' in JFO[#]. 

We may continue this process until we have shown that every sï 
is divisible by x. But this means that no ti has the factor xm, contrary 
to the definition of m. This contradiction proves that w = 0 so that 
the denominators t% of all the 0» are prime to x. Now w = v, and by 
repeating the argument above we find that So and si are divisible by x. 

Computing v2 = ao+uai+u2a2+uzaz = x (ai in Z), we must obtain 
ai = a2 = a3 = 0, ao = x. For #0 we find 

2 s 3
 S 2 JS 

(15) #0 = 20 + #o#(si -Zz + s2 22 + 232i) = a;, 

whence we have 

2 $3 s JS2 

(16) So + X0x(Zi Zz + ZiZz) = X(l — ^0^222 ) • 

Since the numerators of the terms on the left are all divisible by x2, 
the numerator, t2tf—XçSs2sf = Nz\Y(t2) —XONZ\Y(S2), of the quantity in 
parentheses on the right must have a factor x. If the polynomials t% 
and s2 of Zo[x] have constant terms r2 and <r2, respectively, the con­
stant term of NZ\Y(h) —X0NZ\Y(S2) is, then, 

(17) NZ\Y(T2) - X0NZ\Y(O-2) = 0. 

Since t2 is prime to x, we have T2T^0, hence or2^0 by (17). Also, r2 and 
<r2 are in Z0. Thus (17) may be written as 
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(18) xo = NZQ\Y0(T2(T2 ) , 

contrary to the result stated in Lemma 2. This contradiction com­
pletes the proof. 

Let r be any integer greater than unity, and let P be obtained from 
its prime subfield Po by adjunction of r-~ 2 independent indetermi-
nates. Then F is obtained from the perfect field P 0 by adjunction of r 
indeterminates, F and K are said to be fields of degree of imperfec­
tion r, and we have the following result. 

THEOREM 5. For every integer r>\ there exists a modular field K of 
degree of imperfection r such that not all the p-algebras over K have ex­
ponent equal to index. 

This is in contrast to the case r=l for which every ^-algebra is 
known to be cyclic with equal index and exponent. One may note, 
finally, that much of the work above is valid when the characteristic 
is any prime p, and it seems likely that the remaining details can be 
carried through for this generalized case. 
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