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1. Introduction. Tychonoff [7] was the first to prove that the car­
tesian product of any number of bicompact spaces is bicompact. Of 
the other proofs1 in the literature [2, 6] perhaps the simplest is that 
of Tukey, which involves the notion of an ultraphalanx. In the present 
note a proof of a rather general form of this theorem is given, using 
only simple machinery. I t is shown that the same method can be used 
to prove that the cartesian product of any number of absolutely 
closed Hausdorff spaces is an absolutely closed Hausdorff space. 

2. Definitions. The spaces considered are those in which an opera­
tion of closure A of a set A is defined in terms of neighborhoods in the 
usual way, that is, x is a point of A if and only if every neighborhood 
of x contains a point of A. I t follows that the closure operation is 
monotone; in other words, AQB if A C.B. Conversely, any closure 
operation which is monotone can be defined in terms of neighbor­
hoods. No assumptions are made about the neighborhoods of a point, 
except that when they exist, they are sets of points. 

The cartesian product P of a collection of such neighborhood spaces 
{Bk) is a space whose points p are all selections {pk} containing just 
one point pk from each of the spaces Bk> Neighborhoods are defined 
in P as follows. To any neighborhood Nk in Bk of a coordinate pk of p, 
there corresponds in the product space P the neighborhood Wk of p 
consisting of all points q of P whose coordinate g& is in Nk- The inter­
section of any finite collection { Wkr}, r = 1, • • • , n, of neighborhoods 
of p of this type, such that no two subscripts kr are the same, is also 
defined to be a neighborhood of p. This is the usual definition of car­
tesian product due to Tychonoff [7]. Note that it is not true in gen­
eral that the intersection of any finite number of neighborhoods of p 
is a neighborhood of p. 

A system S of sets is said to have the finite intersection property if 
every finite number of sets of S has at least one common point. I t 
can be shown by a familiar argument, using Zorn's lemma or trans-
finite induction [4, 6, 8] , that any system S of subsets of a given set 

1 See also J. W. Alexander, Ordered sets, complexes, and the problem of compactifica-
tion, Proceedings of the National Academy of Sciences, U.S.A., vol. 25 (1939), 
pp. 296-298, and E. Cech, On bicompact spaces, Annals of Mathematics, (2), vol. 38 
(1937), p. 830. 
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with the finite intersection property is contained in a maximal system 
M with this property. This is also a consequence of the theorem of 
M. H. Stone that every ideal in a Boolean algebra is contained in a 
maximal ideal [4]. 

A space B is said to be bicompact if there is at least one point com­
mon to the closures of the sets of any system of sets with the finite 
intersection property (Tukey [ó]). This is equivalent in P-spaces to 
the usual definition of bicompactness. 

3. Bicompactness of cartesian products. We prove the following 
theorem. 

THEOREM 1. The cartesian product P of any collection of bicompact 
spaces {Bk} is bicompact. 

PROOF. Let S be any system of sets of P with the finite intersection 
property, and let M be a maximal system with this property contain­
ing S . Define the projection Mk of the system M on the space Bk to 
be the system whose sets consist of the coordinates in Bk of points 
of a set of M. The system Mk clearly has the finite intersection prop­
erty, since if any sets of M have a common point, their projections 
on Bk have a common point also. 

Since Bk is bicompact, there is a point pk which is common to the 
closures of all the sets of Mk. The points {pk} selected in this way, 
one from each space Bk, are the coordinates of a point p of P . We 
wish to show that p is common to the closures of all sets of S . 

I t follows from the way pk was selected that any neighborhood Nk 
of pk has a point in common with each set of the system Mk. Conse­
quently in the product space P , the neighborhood Wk of p which 
corresponds to Nk, has a point in common with every set of M. Since M 
is maximal, Wk must belong to M, and likewise every intersection 
of a finite number of such neighborhoods {H^,.}, r = l, • • • , n, must 
belong to M. For M, being maximal, must contain all finite intersec­
tions of its sets, since otherwise these finite intersections could be 
added to M. Hence every neighborhood of p belongs to M, and there­
fore every neighborhood of p has a point in common with every set 
of M. Consequently p is in the closure of every set of M and there­
fore of S , which was to be proved. 

4. Absolutely closed Hausdorff spaces. A Hausdorff space H is 
said to be absolutely closed if every homeomorphic image of H which 
is a subset of a Hausdorff space K is a closed subset of K [l, 3, 5] . 

THEOREM 2. A Hausdorff space H is absolutely closed if and only if 
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there is a point common to the closures of the sets of any system of open 
sets of H with the finite intersection property. 

PROOF. Suppose the system S of open sets of H has the finite inter­
section property, but that no point of H is common to the closures 
of all sets of S . Then S is contained in a maximal system ffrf of open 
sets with these two properties. Extend the space H to K by adding to 
it an ideal point x, whose neighborhoods are all sets obtained by add­
ing x to each set of 9tf, while neighborhoods of points other than x 
remain the same as in H. Then K is a Hausdorff space, since the 
closures of neighborhoods of x have only the point x in common. Con­
sequently H is not absolutely closed, since its image in K is not closed. 

Conversely, suppose H is not absolutely closed, but is homeo-
morphic to a subset H* of a Hausdorff space Ky where H* is not 
closed in K. Let x be a point of K — H* which is in the closure of H*, 
and consider the space i ï * U {x}. The system M of open sets of H* 
obtained by deleting x from all its open neighborhoods, has the finite 
intersection property, since x is a point of the closure of H*. There is 
no point common to the closures of all the sets of ffrt, since i î * U {x} 
is a Hausdorff space. This completes the proof. 

THEOREM 3. The cartesian product P of any collection of absolutely 
closed Hausdorff spaces {Hk} is an absolutely closed Hausdorff space. 

The proof is parallel to that of Theorem 1, with sets replaced by 
open sets. In defining the cartesian product P , only open neighbor­
hoods are used, and S , Jtt are systems of open sets. I t is merely neces­
sary to verify that the projection on Hk of an open set of P is open. 
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