RATIONAL APPROXIMATIONS TO IRRATIONALS

ALEXANDER OPPENHEIM

It is well known that if p/q is a convergent to the irrational number x, then $|x-p/q| < 1/q^2$. The immediate converse is of course false but I have not seen in the literature¹ any statement of the converse which is given below.

THEOREM 1. If p and q are coprime, q>0, and if $|x-p/q|<1/q^2$, then necessarily p/q is one of the three (irreducible) fractions

$$p'/q'$$
, $(p' + p'')/(q' + q'')$, $(p' - p'')/(q' - q'')$,

where p''/q'', p'/q' are two consecutive convergents to the irrational x. One at least of the two fractions $(p'+\epsilon p'')/(q'+\epsilon q'')$ where $\epsilon=\pm 1$ satisfies the inequality.

In other words if the inequality is satisfied, then

$$p/q = [a_1, a_2, \cdots, a_{n-1}, a_n + c], \qquad c = 0, \pm 1,$$

where $[a_1, a_2, \dots, a_r, \dots] = x$ is the infinite simple continued fraction for x, so that the a_i are integers, $a_i \ge 1$ $(i \ge 2)$.

Suppose that $x-p/q=\epsilon\theta/q^2$, $0<\theta<1$, $\epsilon=\pm 1$. Let

$$p/q = [b_1, b_2, \dots, b_m], \quad p'/q' = [b_1, b_2, \dots, b_{m-1}],$$

where m (which we can choose to be odd or even) is taken so that $(-1)^{m-1} = \epsilon$. Defining y by the equation

$$x = [b_1, b_2, \dots, b_m, y] = (yp + p')/(yq + q'),$$

we obtain $\epsilon \theta = q^2(x - p/q) = (p'q - pq')q/(yq + q')$; so that, since $p'q - pq' = (-1)^{m-1} = \epsilon$, $y + q'/q = 1/\theta$.

Since $1/\theta > 1$ and q'/q < 1 it follows that y > 0.

If y>1, then $y=[b_{m+1},\ b_{m+2},\cdots]$ $(b_{m+1}\ge 1,\cdots)$, and so $x=[b_1,\ b_2,\cdots,\ b_m,\ b_{m+1},\cdots]$, which, since the infinite simple continued fraction is unique, shows that $p/q=[b_1,\cdots,\ b_m]$ is the mth convergent to x. If however y<1, then $1/y=[c,\ b_{m+1},\ b_{m+2},\cdots]$ with $c\ge 1$. But $q/q'=[b_m,\ b_{m-1},\ \cdots,\ b_2]$ and therefore one of c and b_m must be unity for, if not, then 1/y>2, q/q'>2, $y+q'/q<1<1/\theta$.

¹ Editor's note. In the meantime, R. M. Robinson has proved similar results in the Duke Mathematical Journal, vol. 7 (1940), pp. 354–359. Also the first part of Theorem 1 was observed by P. Fatou, Comptes Rendus de l'Académie des Sciences, Paris, vol. 139 (1904), pp. 1019–1021.

Hence $x = [b_1, \dots, b_{m-1}, b_m+c, b_{m+1}, \dots]$ and $b_i = a_i$ $(i \neq m), b_m+c=a_m$. Thus $p/q=[a_1, a_2, \dots, a_{m-1}, b_m]$ where $b_m=1$ or a_m-1 . Consequently

$$p/q = (p_{m-1} + p_{m-2})/(q_{m-1} + q_{m-2}), \qquad b_m = 1,$$

or

$$p/q = (p_m - p_{m-1})/(q_m - q_{m-1}), \qquad b_m = a_m - 1.$$

The first part of the theorem is proved.

Now let $p/q = (p_n + \epsilon p_{n-1})/(q_n + \epsilon q_{n-1})$, $\epsilon = \pm 1$, p_n/q_n being the *n*th convergent to $x = [a_1, \dots, a_n, x'] = (x'p_n + p_{n-1})/(x'q_n + q_{n-1})$. Then

$$|q^2|x-p/q|=|x'\epsilon-1|(q_n+\epsilon q_{n-1})/(x'q_n+q_{n-1}),$$

which, since $|\epsilon| = 1$, x' > 1, is less than unity if and only if

$$\epsilon(x' - q_n/q_{n-1}) < 2.$$

But this inequality is certainly satisfied when ϵ has the sign opposite to the sign of $x' - q_n/q_{n-1}$. The second part of the theorem follows.

Irreducible fractions p/q can be divided into three classes [o/e], [e/o], [o/o] in which o and e denote odd and even integers respectively.

Since $p_nq_{n-1}-p_{n-1}q_n=\pm 1$ it is clear that consecutive convergents p_{n-1}/q_{n-1} , p_n/q_n belong to two different classes and hence that $(p_n+\epsilon p_{n-1})/(q_n+\epsilon q_{n-1})$ where $\epsilon=\pm 1$ must belong to the remaining class of irreducible fractions. It follows from Theorem 1 that for any irrational x infinitely many fractions of each class exist such that $|x-p/q|<1/q^2$.

Theorem 1 in fact determines all such fractions.

This result is due to Scott² who used the geometric properties of elliptic modular transformations. Scott also showed that the result is the best possible: for a given class and a fixed k, 0 < k < 1, irrationals exist, dense everywhere on the real axis, such that the inequality $|x-p/q| < k/q^2$ is satisfied by only a finite number of fractions in the given class.

To prove the last statement it will be enough to show that, if $x = [a_1, a_2, \dots, a_n, \dots]$ where the a_n are even integers not less than 2E+1, where E>1, then for every fraction of type [o/o],

$$\theta = q^2 |x - p/q| > 1 - 1/E.$$

If $\theta > 1$, there is nothing to prove. If $\theta < 1$, it follows from our theo-

² W. T. Scott, this Bulletin, vol. 46 (1940), pp. 124-129.

rem that (p/q) being irreducible)

$$p = p_n + \epsilon p_{n-1}, \qquad q = q_n + \epsilon q_{n-1}, \qquad \epsilon = \pm 1,$$

for the convergents to x are all [e/o] or [o/e]. Write $X = [a_{n+1}, a_{n+2}, \cdots]$, $Y = [a_n, a_{n-1}, \cdots, a_2]$. Then if $n \ge 2$,

$$\theta = \frac{(Y+\epsilon)(X-\epsilon)}{XY+1} = 1 - \frac{2-\epsilon(X-Y)}{XY+1} > 1 - \frac{2+X+Y}{XY+1},$$

$$XY+1-E(2+X+Y) = (X-E)(Y-E) - E^2 - 2E + 1$$

$$> (E+1)^2 - E^2 - 2E + 1 > 0,$$

$$\theta > 1 - 1/E.$$

If n=1, then $p=p_1+1$, $q=q_1=1$, $\theta=1-[0, a_2, \cdots]>1-1/E$.

RAFFLES COLLEGE, SINGAPORE

MEASURABILITY AND DISTRIBUTIVITY IN THE THEORY OF LATTICES¹

M. F. SMILEY

Introduction. Garrett Birkhoff² derived the following self-dual symmetric condition that a metric lattice be distributive:

(1)
$$2[\mu(a \cup b \cup c) - \mu(a \cap b \cap c)] = \mu(a \cup b) - \mu(a \cap b) + \mu(a \cup c) - \mu(a \cap c) + \mu(b \cup c) - \mu(b \cap c).$$

In a previous note³ the author introduced and discussed a generalization of Carathéodory's notion of measurability⁴ with respect to an outer measure function μ which applies to arbitrary lattices L. The μ -measurable elements form a subset $L(\mu)$ consisting of those elements $a \in L$ which satisfy

(2)
$$\mu(a \cup b) + \mu(a \cap b) = \mu(a) + \mu(b)$$

for every $b \in L$. Closure properties of $L(\mu)$ were investigated. In par-

¹ Presented to the Society, January 1, 1941. The author wishes to express his gratitude to the referee for his valuable suggestions and comments.

² Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25, p. 81. We shall adopt the notation and terminology of this work and shall indicate specific references to it by B.

³ A note on measure functions in a lattice, this Bulletin, vol. 46 (1940), pp. 239-241. We shall indicate references to this paper by M.

⁴ Vorlesungen über Reelle Funktionen, 2d edition, p. 246.