RATIONAL APPROXIMATIONS TO IRRATIONALS
ALEXANDER OPPENHEIM

It is well known that if /¢ is a convergent to the irrational number
x, then ]x—- p/g] <1/q? The immediate converse is of course false but
I have not seen in the literature! any statement of the converse which
is given below.

TuEOREM 1. If p and g are coprime, ¢>0, and if |x—p/q| <1/g?,
then necessarily p/q is one of the three (irreducible) fractions
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where p''/q", p'/q are two consecutive convergents to the irrational x.

One at least of the two fractions (p'+ep'")/ (¢’ +eq'") where e= +1 satis-
fies the inequality.

In other words if the inequality is satisfied, then
P/q= [alyaﬁr"'ran—lyan-l_c]y C=Oyil)
where [ay, a3, - - -, @4, - - - ] =2« is the infinite simple continued frac-

tion for x, so that the a; are integers, a;=1 (322).
Suppose that x—p/g=¢€0/g% 0<0<1, e= +1. Let

P/q = [bly b27 Tty bm]y P’/q, = [blv b27 Ct Ty bm-—l]’

where m (which we can choose to be odd or even) is taken so that
(—1)m1=¢. Defining y by the equation

x = [blv ba, >+, bmy )'J = (yp + PI)/(yq + q,)’

we obtain ed=g(x—p/q)=(p'q—pq')q/(vg+¢’); so that, since
p'a—pg' =(—1)""1=¢ y+q'/q=1/0.

Since 1/60>1 and ¢'/g¢<1 it follows that y>0.

If y>1, then y=[bmy1, bmy2, -+ ] (bmpua=1,---), and so
%=[b1, by, - * +, by bmy1, - + - ], which, since the infinite simple con-
tinued fraction is unique, shows that p/q=[bs, - - -, bu] is the mth
convergent to x. If however y<1, then 1/y=[c, bmi1, bmia, * * - |
with ¢21. But ¢/¢'= [bm, bm_1, - - -, bz] and therefore one of ¢ and
b» must be unity for, if not, then 1/y>2, ¢/¢'>2, y+¢'/g<1<1/8.

1 Editor’s note. In the meantime, R. M. Robinson has proved similar results in the
Duke Mathematical Journal, vol. 7 (1940), pp. 354-359. Also the first part of Theo-
rem 1 was observed by P. Fatou, Comptes Rendus de I’Académie des Sciences, Paris,
vol. 139 (1904), pp. 1019-1021.
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Hence x=1[by, - -+, bm_t, bm=4C, bmys, - - - | and bi=a; (E%m),
bm+c=an. Thus p/q=[as, as, - -+, @m_1, bm] Where bp=1 or a,—1.
Consequently

P/q = (?m—l + 'Pm—2)/(Qm—l + Qm—2), bm = 1»
or
P/q = (Pm - Pm—l)/(Qm - Qm—l), b =0ap — 1

The first part of the theorem is proved.
Now let p/q= (pn+€pn-1)/(@n+€@n1), €= 1, pn/q, being the nth
convergent to x=[as, * + * , Gn, &' | =(&"Pn+Pn-1)/(*'gn+gn_1). Then

¢ e — p/q| = o'e = 1] (gn + egu1)/(¥'qn + ga-),
which, since ] e| =1, " >1, is less than unity if and only if
(2" — qn/qn-1) < 2.

But this inequality is certainly satisfied when e has the sign opposite
to the sign of ' —¢,/¢s—1. The second part of the theorem follows.

Irreducible fractions p/q can be divided into three classes [o/e].
[e/o], [0/0] in which o and e denote odd and even integers respec-
tively.

Since pugn-1—pPaagn=t1 it is clear that consecutive conver-
gents pPn_1/gn—1, Pr/qx belong to two different classes and hence that
(prn+e€pn-1)/(gn+€gn—1) wWhere e= +1 must belong to the remaining
class of irreducible fractions. It follows from Theorem 1 that for
any irrational x infinitely many fractions of each class exist such that
|x—p/q|<1/g"

Theorem 1 in fact determines all such fractions.

This result is due to Scott? who used the geometric properties of
elliptic modular transformations. Scott also showed that the result
is the best possible: for a given class and a fixed k, 0<k<1, irra-
tionals exist, dense everywhere on the real axis, such that the inequality
Ix-— p/q[ <k/q? is satisfied by only a finite number of fractions in the
given class.

To prove the last statement it will be enough to show that, if
x= [al, Qg+ * ) Byy * * ° ] where the a, are even integers not less than
2E+1, where E>1, then for every fraction of type [0/o],

0=¢|x—p/g| >1—1/E.
If 6> 1, there is nothing to prove. If <1, it follows from our theo-

2 W. T. Scott, this Bulletin, vol. 46 (1940), pp. 124-129.
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rem that (p/q being irreducible)

P = Pnt €epnyy q = qn + €qur, e= + 1,
for the convergents to x are all [e/o] or [o/e]. Write X =[anp,
Gnszy -+ |, Y=[an, @Gnyy -+ +, @2]. Then if n22,

_UHIE=9_ 2-dx-® | 2k x+¥
XYV 41 XYV + 1 XV + 1

XY +1—EQ+X+YV)=(X—E(Y —E)— E*—2E+1
>(E4+1)2—E—2E+1>0,
6>1-—1/E.
If n=1, then p=p:+1, g=q1=1, 6=1—[0, @y, - - - |>1—1/E.

RAFFLES COLLEGE, SINGAPORE

MEASURABILITY AND DISTRIBUTIVITY IN THE
THEORY OF LATTICES!

M. F. SMILEY

Introduction. Garrett Birkhoff? derived the following self-dual sym-
metric condition that a metric lattice be distributive:

2[u@ I b\U ) —p(@NbdMNe)] = ula\Jbd) — ulaMbd) + ula\Jc)
—pleMo) +udJe) —udMo).

In a previous note? the author introduced and discussed a generaliza-
tion of Carathéodory’s notion of measurability* with respect to an
outer measure function u which applies to arbitrary lattices L. The
u-measurable elements form a subset L(u) consisting of those elements
a &L which satisfy

2 w(a\Jb) + u(aMb) = u(a) + u(d)

for every b&E L. Closure properties of L(u) were investigated. In par-

(1)

1 Presented to the Society, January 1, 1941. The author wishes to express his grati-
tude to the referee for his valuable suggestions and comments.

2 Lattice Theory, American Mathematical Society Colloquium Publications, vol.
25, p. 81. We shall adopt the notation and terminology of this work and shall indicate
specific references to it by B.

3 A note on measure functions in a lattice, this Bulletin, vol. 46 (1940), pp. 239-241.
We shall indicate references to this paper by M.

4 Vorlesungen iiber Reelle Funktionen, 2d edition, p. 246.



