
NOTE ON AUTOPOLAR CURVES1 

MALCOLM FOSTER 

1. Introduction. The aim of this paper is to study those curves 
which are autopolar with respect to the parabola 2rj = £2. The method, 
which is believed to be new, is to consider these curves as special solu­
tions of those differential equations which are invariant under the 
dual substitutions for the above conic of reference.2 It will be obvious 
that this method may be readily modified for the study of curves 
which are autopolar with respect to any conic. The parabola 2rj = £2 

has been chosen for the sake of the simplicity of the substitutions. 

2. Dual substitutions for the conic of reference. In the ordinary 
differential equation, 

(1) ƒ(*, y, y', y", • • • , y<»>) = 0, 

let us make the well known dual substitutions3 

x = P = F', y = Y'X - F, p = y' = X, 
( y" = 1/F", y"' = - Y"'/Y"\ • • • 

for which the conic of reference is the parabola 2T7 = £2. We obtain a 
new differential equation, 

(3) / (F ' , Y'X - F, X, 1/F", • • • ) = 0, 

whose solution is, let us say, 

(4) 0(X, F, a, * , , - • • , cn) = 0. 

If we eliminate X, F from equation (4) and the following two equa­
tions,4 

dó dó dó dó dó 
(5) x + = 0, - y = F + X ; 

dY dX dY dY dX 
we shall have the solution of the original differential equation (1), 
which we shall denote by 

(6) F(x, y, ch c2, - - - , cn) = 0. 

3. Geometrical interpretation. Let C be any curve of the family 

1 Presented to the Society, October 28, 1939. 
2 A. R. Forsyth, A Treatise on Differential Equations, 3d edition, 1903, pp. 45-47. 
3 Forsyth, op. cit. 
4 Forsyth, loc. cit. 
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(6). As a point P traverses C, the polar of P relative to the conic of 
reference will envelop some member C' of the family (4), and vice 
versa. That is, C and C' are polar reciprocals. 

If (1) is of the first order, equations (1) and (3) may have singular 
solutions. If E and E' denote the envelopes of the families (4) and (6), 
it is evident from the above that E and E' are also polar reciprocals. 

In addition to these relations between the families (4) and (6),there 
are several well known relations between the extraneous loci which 
may exist in connection with the integral curves. For example, a cus­
pidal locus for the integral curves (4), [(6)], will correspond to the 
locus of points of inflexion for the integral curves (6), [(4)].6 

4. Condition that y=f(x) be autopolar. If a curve C, y:=f(x)J be 
autopolar, that is, its own polar reciprocal, the polar of any point 
(#i, 3>i) on C will be tangent to the curve at some other point (#2, ^2). 
Relative to the above conic of reference, the polar of any point (x, y) 
on C is x£ — y\ — 3>=0, which we may write 

(7) xi - v - ƒ(*) = 0. 

This is a one-parameter family of lines with x as the parameter, and 
their envelope will be found by the elimination of x from (7) and the 
following equation, 

(8) * - ƒ (*) = 0. 

The necessary and sufficient condition that C be autopolar is that on 
eliminating x we shall get rj =ƒ(£) as the envelope. From (7) and (8) 
we have xf'{x) — 77 — f(x) = 0; and on replacing 77 by ƒ(£), or ƒ[ƒ'(#)], 
we have 

(9) f[f(x)]+f(x)-xf(x) = 0. 

We have, therefore, the following theorem: 

THEOREM 1. A necessary and sufficient condition that a curve y =f(x) 
be autopolar with respect to the conic 2rj = ^2 is that the relation (9) be 
satisfied. 

It is interesting to note that (9) is of the Clairaut type. 

5. Relations between conjugate pairs, (xu yi) and (x2, y2). Consider 
any point Pi(xh yi) on an autopolar curve C. The polar of Pi is 
#i£ —77—3>i = 0; and since this line is tangent to C at some point 

6 Sophus Lie and Georg Scheffers, Geometrie der Berührungstransformationen, vol. 1, 
1896, pp. 24-27. 
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P2(x2, 3^), the equation of the polar of Pi must be satisfied by the 
coordinates of P2 . Consequently,6 

(10) yi + y2 = X1X2. 

From the theory of polar reciprocals we know that the polar of P 2 

is tangent to C at Pi, and since the slopes of the polars of Pi and P 2 

are respectively X\ and #2, we have 

(11) Xx = f'(x2), X2 = f'(Xi). 

Let us call such a pair of points, Pi and P2 , a conjugate pair, and say 
that each is the conjugate of the other. The relations (11) are also 
evident from the set of substitutions (2) in which x=P, X = p. 

From (10) and (11) we have the following theorem: 

THEOREM 2. On any autopolar curve with respect to the conic 2 77 = £2, 
the product of the slopes at a conjugate pair is equal to the sum of the 
ordinates at these points. 

6. Self-conjugate points. For any real conjugate pair, Pi(xi, yi) 
and P2{x2, ^2), let us suppose x2>x\. Let us also assume that f{x) is 
defined for all values of x between x\ and x2. Now let x2 decrease, that 
is, let P 2 approach the original position of Pi . When P 2 arrives at this 
position. Pi will have arrived at the original position of P2. Hence Xi 
must increase as x2 decreases. Consequently, between each real con­
jugate pair there exists a point Pz(xz, y3) which is self-conjugate. From 
(10) we shall have 2yz = xl, and therefore P 3 lies on the conic of refer­
ence. Since the polar of P 3 is tangent to the conic of reference at this 
point, we see that every autopolar curve has a common tangent with 
this conic. 

Also from (11), and the law of the mean, we have 

(12) = — 1 = ƒ (#4), xi < x* < x2, 
x2 — xi 

and since this relation is satisfied by every conjugate pair, no matter 
how near they may be to P3 , we see that 

(13) ƒ"(*,) = - 1. 

From (11) and (13) we readily find the curvature of any autopolar 
curve at P 3 to be 

- 1 _ - 1 

[1+ƒ"(*«)l*'* ~ (l + *a)3/2 

6 It is obvious from (2) that (10) is simply a restatement of (9). 
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I t is readily verified that, except for sign, this is the curvature of the 
conic of reference at P3. Hence we have: 

THEOREM 3. For every autopolar curve with respect to the conic 2rj = %2, 
the curvature at the self-conjugate points P 3 is the same, except for sign, 
as the curvature of the conic at P3. 

We note that this theorem applies also to the case of the general 
conic by virtue of the fact that under any collineation the ratio of 
the curvatures of two curves at a point at which they are tangent is 
invariant.7 

From (12) it also follows that between real conjugate pairs ƒ'(#) 
is a decreasing function. 

7. Loci associated with a conjugate pair. Consider the locus of Q, 
the intersection of the polars for any conjugate pair, P i and P2 . The 
coordinates (£, rj) of Q are readily found from the equations of the 
polars of P i and P2 ; we find 

yi-y2 x2yi-x1y2 

(14) £ = , ri = 
X\ %2 X\ %2 

By means of (11) these equations of the locus of Q are readily given 
in terms of one parameter, say x\. 

Since the polar of Q is the line P1P2, we see that the locus of Q and 
the envelope of the lines P1P2 are also polar reciprocals. 

I t will be of interest to consider also the locus of S, the mid-point 
of the segment P1P2. 

We shall also consider the locus of R, the intersection of normals at 
conjugate pairs. The coordinates of R are readily found to be 

2 L 2 I 

xi + xix2yi — x2 — x\x2y2 x2 + #1̂ 2 — x\ — x2y\ 
(15) { = , ri = 

Xi — X2 Xi — X2 

From §6 it is evident that the loci of Q and 5 must pass through P3 . 

8. Differential equations invariant under the above transformation. 
Any differential equation of the form 

(16) ƒ ( * ) / ' + ƒ ( ƒ ) = 0 

becomes, on using (2), f(X) Y"+ f(Y') =0 , which is identical with 
(16). Let us denote the solution of (16) by 

7 G. Fubini and E. Cech, Introduction à la Géométrie Protective Différentielle des 
Surfaces, 1931, pp. 17-20. 
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(17) 4>(x, y, ci, c2) = 0. 

As a point P traverses some member C of (17), the polar of P will, 
in general, envelop some other member C of the same family. We 
wish to determine if there are any members of the two-parameter 
family (17), which are autopolar. The method for the determination 
of these curves will be illustrated by particular examples. 

EXAMPLE 1. (x + l)y"+y' + l=0. The solution of this is 

(18) y = d log (x + 1) - x + c2. 

Here ƒ(x) = c\ log (x + l)—x+c2l and f(x) =Ci/(x + l) — 1. If we put 
these expressions in (9), we get (ci — Ci log Ci—l — 2c2)x + Ci — Ci log C\ 
— 1 — 2c2 = 0, which is satisfied only if c2 = \c\ — \c\ log C\ — \. Conse­
quently, of the two-parameter family of curves (18), we have the 
following one-parameter family whose members are autopolar: 

(19) y = ci log (x + 1) — x + \cx — \cx log a — \. 

The particular member of (19) for which C\ — 1 has the property that 
the locus of 5 (the mid-point of P1P2) is the line x+y = 0. 

It may be readily verified that, as indicated in §6, the conic of 
reference, 2rj = £2, is the envelope of the one-parameter family of auto­
polar curves (19). 

EXAMPLE 2. x3y"+y'd = 0. The solution is c\(y — c2)
2 = cix2 — 1; and 

on putting this in (9) we have 2c2(cix2 — l )1 / 2 = 0. Hence c2 = 0, and of 
this two-parameter family of hyperbolas there exists the one-parame­
ter autopolar family Cix2 — c\y2 — 1. It is readily found from (14) that 
the locus of Q for these curves is the line 77 = 1/ci. And from (15) the 
locus of R is the line 77 = — (ci+ l ) / d . 

EXAMPLE 3. y" + l =0 . The solution is y= —\x2-\-c\x+c2, and this 
in (9) gives c2— —\c\. Hence the parabolas y= — \x2-\-CiX — \c\ are 
autopolar. It is readily found that for these curves the locus of Q is 
the line £ = Jci, and that this line is also the locus of S. We also find 
that the coordinates of the mid-point of the segment QS, (Jci, \<%)y 

are identical with the coordinates of P3, the point of contact of the 
parabolas with the conic of reference. 

EXAMPLE 4. x-\-y' —xy'. The solution of this first-order equation is 
3>=x+log (x— l ) + c , and this in (9) gives c = 0. Hence there is but 
one member of the family which is autopolar. 

EXAMPLE 5. y'y"+x = 0. From this equation we derive the follow­
ing one-parameter family of autopolar curves: 

1 2 • / . 1 / 2 V / 2 1 2 
y — %Ci arc sin x/c\ + %x(ci — x ) — ^Ciir. 
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There are, of course, many other types of differential equations 
which are invariant under (2). We mention a few of these: f(x)+f(y') 
= F(xy'), 2y-xy'=f(y')-f(x), and f(y)y"+f(xy'-y) =Q. 

The above examples suggest that, in general, we have the following 
distinction between the autopolar curves obtained from invariant dif­
ferential equations of the first and second orders. When the solution 
of such a first-order equation is put in (9), this relation will be satisfied 
by only a finite number of values of the one arbitrary constant ; and 
hence of this single infinity of curves we shall have but a finite number 
which are autopolar. When the solution of an invariant second-order 
equation is put in (9), the relation will be satisfied in many cases by 
some relation between the two arbitrary constants; that is, from the 
double infinity of solutions we select a single infinity of autopolar 
curves. Moreover, in every case, this one-parameter family of auto­
polar curves envelopes the conic of reference 2rj = £2. 

There are, however, exceptions to the above. For example, consider 
the differential equation (y — x 2 )y+:ry = 0, invariant under (2), whose 
solution is cx2-\-y2 — 2cy = 0. On using (9) we find there is no value of c 
which satisfies this relation. That is, among these conies there are no 
autopolar curves; but for each conic of the family the polar reciprocal 
is some other conic of the same family. It may readily be shown that 
of the above conies, those for which the values of c are negatives of 
one another are polar reciprocals. 

9. Other dual substitutions. The dual substitutions for any given 
conic of reference are easily derived after the manner outlined in 
Forsyth. And any differential equation which is invariant under these 
substitutions will have among its solutions certain curves which are 
autopolar with respect to the given conic. 

For example, if the conic of reference be the unit circle, these dual 
substitutions are8 

X -Y' 1 
(20) V = ; X = ; y = ; • • • . 

Y Y - XY' Y - XY' 

Without repeating the argument of §4, the necessary and sufficient 
condition that a curve y = F(x) be autopolar with respect to the unit 
circle is 

1 f f'(x) 1 
(21) = F ^ ^ . 

ƒ(*) - xf'(x) lxf(x) - f(x)J 

Lie und Scheffers, loc. cit., p. 23. 
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EXAMPLE 6. xy'+y = 0. This equation is invariant under (20) ; and 
its solution, y = c/x, when put in (21), satisfies this relation when 
c = ± J. Consequently, the equilateral hyperbolas, 2xy = ± 1, are auto-
polar with respect to the unit circle. 

For a complete bibliography on the subject of autopolar curves the 
reader is asked to consult H. Brocard and T. Lemoyne, Courbes Géo­
métriques Remarquables, vol. 1, 1919, pp. 430-432. 
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