
A NOTE ON CONVEX FUNCTIONS1 

BERNARD FRIEDMAN 

I t is well known that , just from the definition of convexity, a func­
tion of one variable which is convex must also be absolutely continu­
ous. It was not known whether this property would generalize to 
convex functions of more than one variable. In this note there is con­
structed a convex function of two variables which is not absolutely 
continuous. 

Carathéodory's definition of absolute continuity [ l ] for functions 
of two variables may be stated as follows: 

Let f(x, y) be any functions of two variables and S the square with 
the vertices 

(% — h, y — h), (x — h, y + h), (x + h, y — h), (x + h, y + h). 

Let I(S) be the following interval function 

I(S) = f{x + h, y + h) + f(x -h,y-h) 

— f(x + h, y — h) — f(x — hy y + h). 

Then f(x, y) is said to be absolutely continuous in a two-dimen­
sional region R if ƒ(#, y) is absolutely continuous in each variable 
separately and if also I(S) is an absolutely continuous function of 5. 
Carathéodory [2] proves the absolute continuity of f(x, y) is a neces­
sary and sufficient condition that there exist functions g(x), h(y) and 
k(x, y) such that 

g(x)dx + I h{y)dy + I I k(x, y)dxdy + C. 
o Jo J o J o 

The counterexample of this note will be constructed from the in­
tegral of Cantor's middle third function which can be defined as fol­
lows: 

m(0) = 0, m{\) = 1, 

m{x) = 1/2, 1/3 ^ a; ^ 2 /3 , 

m(x) = 1/4, 1/9 ^ ^ 2/9, 

m(x) = 3/4, 7/8 ^ x ^ 8/9, 

It is well known that m(x) is a continuous monotonically increasing 
function whose derivative is zero almost everywhere. Obviously m(x) 
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is not absolutely continuous and not convex, but f(x) =Jlm(t)dt will 
be both convex and absolutely continuous. f(x) is convex since its 
derivative m(x) is everywhere non-decreasing. 

I t is to be noticed that if f(x) is a convex function of xt then 
ƒ(#, y)=f(oc+y) is a convex function of two variables x and y. 

However if f(x, y) were absolutely continuous in the two variables x 
and y, by Carathéodory's theorem it could be represented as 

ƒ* x s*y /» x /» y 

g(x)d% + f h(y)dy + I I k(x, y)dxdy + C. 
o «J o «J o «J o 

But differentiating with respect to # it follows that 

o 

for almost all values of x. Let x0 be some value of x for which the 
equality holds. Then 

m(xo + y) = gOo) + I *(*o, ^)^y 
•J o 

or m(xo+y) would be absolutely continuous, which is impossible. 
Therefore f(x+y) is a convex function of two variables which is 

not absolutely continuous. 
It is quite easy to prove directly that I(S) is not absolutely con­

tinuous. The direct proof, however, is uninteresting and since it re­
quires some tedious computations, it will be omitted. 
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