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I. INTRODUCTION 

1. The object of the research [ l ] with which this address is con­
cerned is twofold : first, to demonstrate, by direct methods, the exist­
ence of solutions, perhaps in some generalized sense, for a wide class 
of variational problems for multiple integrals, and second, to investi­
gate further differentiability properties of the generalized solutions 
thus obtained. We consider only problems in nonparametric form. 

2. Both of these goals have been achieved in the recent well 
known solutions of the problem of Plateau and in the solutions of the 
Dirichlet problem by variational methods. In more general problems 
this program has not been carried through completely except in very 
restricted cases. However, there are very important known results in 
connection with each separate aim. In connection with the existence 
theory, very important work has been done in the nonparametric case 
by Tonelli [2] and in the parametric case by McShane [3]. In the 
parametric case, practically nothing is known concerning the differ­
entiability of the solutions obtained. In the nonparametric case, it has 
been proved by E. Hopf [4] that if f(x, y, z, p, q) is of class CI1 (that 
is, if ƒ is of class C" and its second derivatives satisfy a uniform 
Holder condition2 with exponent ce, 0 < a < l , on any bounded 
portion of space) and is the integrand in a regular variational 
problem (that is, if fPPfqq — fpg>Ot fPP>0) and if z0 is continuous 
on G and is of class C/ on each region D with DcG and minimizes 
ffof(xt yy 2, py q)dxdy among all functions, continuous on G, of class 
C' in G, and coinciding with ZQ on G*, then ZQ is of class Cy" on any 
region D as above for any y <a. The author has proved in a previous 
paper [5] that the same result holds if s0 merely satisfies a uniform 
Lipschitz condition3 on regions D interior to G. The result of E. Hopf 

1 An address delivered before the meeting of the Society in Pasadena on Decem­
ber 2, 1939, by invitation of the Program Committee. 

2 A function f(P) is said to satisfy a uniform Holder condition on a set S if 
\f(Pi) - / ( A ) | ^ C • | PiP2 | a , 0 <a < 1, for each pair of points (Pi, P2) in S; C is called 
the coefficient and a is called the exponent of the Holder condition and | P1P2I denotes 
the distance from Pi to P2; C and a are supposed to be independent of Pi and P2. 

8 A function f(P) is said to satisfy a uniform Lipschitz condition on a set S if 
| / (P i ) - / (P 2 ) | ^C* |PiP2 | for every pair (Pi, P2) on S, C independent of Pi, P2. 
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can be extended readily to the case where ƒ is a function of 
(#> »̂ 2, • • • , zN) while the methods used in the author's previous 
paper [5] do not permit this extension. 

3. In connection with the existence theory, Tonelli proves in the 
two papers mentioned that if ƒ(#, y, z, p1 q) satisfies certain continuity 
restrictions, gives rise to a quasi-regular variational problem, and if 
it satisfies 

(3.1) ƒ(*, y, z, p, q) ^ m(p2 + q2)"'2 + N, m > 0, a > 2, 

or (essentially) 

(3.2) ƒ(*, y, *, py q) ^ m(p2 + q2), ƒ(*, y, z, 0, 0) = 0, m > 0, 

then the integral 

*(*, G ^ = J J f(x> y> z> fi> <L)àxày 

takes on its minimum among all functions z which are absolutely 
continuous in his sense and assume given continuous boundary val­
ues, provided I(z, G) is finite for some such function and G is properly 
restricted; more general boundary value problems are also consid­
ered. The proof consists in showing first that I(z, G) is lower semi-
continuous with respect to uniform convergence in his class, and then 
in replacing any minimizing sequence by one in which the functions 
are equicontinuous so that a uniformly convergent minimizing sub­
sequence is obtained which can be shown to converge to a function in 
his class. If the a in (3.1) is less than 2, such a procedure is not possi­
ble in general. In fact, when we try to generalize these results to 
functions of N independent variables, we find that Tonelli's procedure 
is impossible unless a^N (see §12). As the gap Ka<N grows wider 
as N increases, it seems desirable to obtain existence theorems of 
some sort assuming merely that a > l ; for a = l, there are examples, 
even for iV= 1, of problems which have no solutions. 

Evidently we must abandon the use of continuity and equicon-
tinuity in obtaining our existence theorems but must certainly retain 
absolute continuity in some sense. G. C. Evans [ó] has introduced a 
class of functions, which he calls "potential functions of their gen­
eralized derivatives," which would seem to form a proper class of 
admissible functions; we shall call these functions "functions of class 
ty" (see below). Surprisingly enough, these functions were introduced 
before those of Tonelli, and Evans [7] has investigated the connection 
between the two classes of functions (we state the results below). 
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4. Before proceeding to a discussion of these functions and their 
applications, we must introduce certain notations and terminology. 
The iV-tuples (xi, • • • ,##) , (£i> • • • » £ # ) > • • • , will be denoted by the 
single letters x, £, • • • , and the closed cell a<^#,-^&»-, i = l, • • • , N, 
will be denoted by [a, b]. The functional notation ƒ(xi, • • • , XN) will 
be abbreviated to f{x) and the Lebesgue integrals of f{x) over [a, &] 
or a set E will be denoted by 

/
f{x)dx, I f{x)dx. 

a "E 

It is frequently desirable to consider the behavior of a function f(x) 
with respect to a particular coordinate variable #& or with respect to 
the (iV— 1) variables (#i, • • • , Xk-i, afc+i, • • • , x;v)- We then denote the 
latter variables by x{ , we write {x£, x£) for # and ƒ{x£, re*) for ƒ(x) : 
thus/(a& , #&) denotes the function ƒ (ai, • • • , a*-i, #*,, a^+i, • • • , â v) of 
the single variable Xh {&£ being fixed) and ƒ (#/ , ah) denotes the f unc­
tion ƒ (xi, • • • , ffjfe_i, #&, Xk+i, - ' • j XN) {ah being fixed). The projection 
of the cell [a, b] on #& = 0 is denoted by [a* , b£ ] and 

ƒ. f{x£ , fl*)**** 

denotes the (iV—l)-dimensional integral of f{x£, #&) over [a/ , W ]. 
If G is a region (open connected set), G* denotes its boundary and G 
its closure. All integrals are Lebesgue integrals. 

I I . T H E ADMISSIBLE FUNCTIONS 

5. We now define the various classes of functions of which we shall 
speak. 

DEFINITION 5.1. A function f {x) is of class $ on a region G if 
(i) it is summable on each closed cell interior to G, and 
(ii) there exist f unctions V\{x), • • • , vN{x), satisfying (i) and such 

that 

I [f(*£, bk) — f(x£, a£)]dx£ = I vk{x)dx 
J a'k J a 

for almost all cells [a, b] interior to G {that is, all such cells such that 
the point (ai, • • • , a^; &i, • • • , &jv) does not belong to a set of 2N-dimen­
sional measure zero). 

DEFINITION 5.2. A function f {x) is of class ty' on G if 
(i) it satisfies (i) of Definition 5.1, and 
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(ii) if [a, b] is any cell interior to G, f(x£, Xk) is A.C. (absolutely 
continuous) in Xk for a^ ^ Xk ^ bk for almost every xl in [al, bl], and 

(iii) df/dxk (which exists almost everywhere and is measurable by (i) 
and (ii)) is summable on each cell interior to G. 

DEFINITION 5.3 [s]. A function f (x) is absolutely continuous in the 
sense of Tonelli (A.C.T.) on G if 

(i) it is continuous on G, 
(ii) it satisfies (ii) of Definition 5.2, and 
(iii) if [a, b] is any cell in G, then the variation off(xk , Xk) as a func­

tion of Xk alone on [ak, bk] is a summable (known to be lower semicon-
tinuous from (i)) function of xl. 

DEFINITION 5.4. A function f (x) is of class ty" on G if it is of class ^ 
there and is continuous. 

It is easily shown that a function of f(x) of class ty determines the 
functions vk(x) of Definition 5.1 to within a null function (a function 
which vanishes almost everywhere). Hence it defines completely the 
set functions feVk(x)dx (fe = l, • • • , N) which are A.C. on any 
bounded set E whose closure is in G. Accordingly we propose, with 
Evans [ó], the following definition: 

DEFINITION 5.5. The generalized derivative Dxkf off with respect to Xk 
is defined as the Lebesgue derivative [9] of the set f unction feVk(x)dx de­
fined above, wherever this derivative exists. 

I t is well known that this derivative exists almost everywhere and 
coincides with vk(x) almost everywhere. For simplicity, we shall use 
the notation fxh to denote either Dxkf or df/dxk as desired (see §6 for 
a justification of this usage). 

6. The following theorems concerning the above classes of func­
tions are easily demonstrated : 

THEOREM 6.1. If f(x) is of class $ on a region G, any function f *(x) 
which is equivalent to f(x) on G (that is, differs from f (x) by a null func­
tion) is also of class ^ on G and the generalized derivatives of f and f* 
exist at exactly the same points and coincide at these points. 

THEOREM 6.2. Any two f unctions of class 3̂ whose respective general­
ized derivatives coincide almost everywhere differ at most by a constant 
and a null function. 

THEOREM 6.3. Any f unction of class $ ' is of class $ and correspond­
ing generalized and partial derivatives coincide almost everywhere. 
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THEOREM 6.4. Any f unction of class $ is equivalent to a function of 
class <§'. 

THEOREM 6.5. The classes in Definitions 5.3 and 5.4 coincide. 

THEOREM 6.6. A necessary and sufficient condition that f(x) be of 
class ty on G is that it satisfy (i) of Definition 5.1 and that for each cell 
[a, b] interior to G, there exist summable f unctions vu(x) and a sequence 
\fn(x)\, each fn satisfying a uniform Lipschitz condition on [a, b], 
such that 

lim I | fn - f\ + X)l fn,xk - Vk\ \dx = 0. 

7. We now define the most important of all of our classes of ad­
missible functions. The theorem below and those in the next five 
sections would make it appear that these functions should play an 
important rôle in many other branches of analysis as well as in the 
present research. 

DEFINITION 7.1. A function f (x) is said to be of class tya ($«' or $« ' ), 
a = 1, on G ifit is of class $ ( $ ' or $ " ) there and if \f\ a and \ Dxkf\ « 
are summable over G, 4 = 1, • • • , N. 

The following theorem concerning these functions is of fundamen­
tal importance. 

THEOREM 7.1. The space $ a of classes of equivalent f unctions of class 
tya on a region G is a Banach space (space of type B) [10] if we define^ 
for instance, 

11/11 « = Da(f,G) m Da(f,G) + f \f\-dx, 
J Q 

(7.1) 
/ • r » -i«/2 

A*(/,G)-Jö[ZI/*(|
2J dx, 

|| ƒ || denoting the norm of f in ^a on G. 

8. Before proceeding further with the discussion of these functions, 
we propose two more definitions as follows: 

DEFINITION 8.1. A transformation #=#(;y) of a set T into a set S 
is Lipschitzian if it is 1-1 and continuous and if the functions Xi(y) and 
yi(x) (of the inverse) all satisfy uniform Lipschitz conditions on each 
closed subset of T and S respectively. If the Lipschitz conditions are uni-
form over the whole of T and 5, we say that the Lipschitzian transforma­
tion is regular. 

file:///f/-dx
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DEFINITION 8.2. A region G is said to be Lipschitzian if G can be 
covered by a finite number of sets 71, • • • , JL, each of which is the prod­
uct of G with an open set and is the image under a regular Lipschitzian 
transformation of either the open unit cube \ji\ < 1 or the part of this 
cube for which yN^O; in the latter case we assume that the transforma­
tion sets up a 1-1 correspondence between the points of y^G* and the 
points of the half-cube f or which yN = 0. 

9. Rademacher [ l l ] has shown that a function satisfying a Lip-
schitz condition on a region G possesses a total differential almost 
everywhere and has also proved the usual theorems on transforma­
tions of multiple integrals to hold for Lipschitzian transformations. 
With these definitions and results in mind, we may generalize a result 
of Evans [12] as follows: 

THEOREM 9.1. Let f(x) be of class $ {or $ " ) on a region G and let 
x—x(y) be a Lipschitzian transformation of a region H into G. Then 
the transformed function f[x(y)]=g(y) is of class ^ (or ty") on H. 
Moreover if Xo=x(yo) where y0 is a point of H at which all the Xi(y) 
possess total differentials and if all the generalized derivatives of f exist 
at xo, then all the generalized derivatives of g exist at yo and are con­
nected with those off at xo by the usual formulas. Iff is of class tya on G 
and the transformation is regular, then g is of class tya on H. 

Concerning the functions of class ty', we have proved the following 
theorem : 

THEOREM 9.2. Any function of class ty on G is equivalent to a func­
tion of class ^ on G which is transformed into a function of class $ ' 
by any regular Lipschitzian transformation. 

Not every function of class $ ' has this property, and even if it does, 
an example of Saks [13] shows that the statement of Evans concern­
ing the generalized derivatives is not in general true for the partial 
derivatives. 

10. We now come to a discussion of the boundary values of func­
tions of class tya on bounded regions. If f(x) is of class %a on a Lip­
schitzian region G (cc^l) , we may state the following fundamental 
results: 

THEOREM 10.1. There exists a sequence {fn(x)} of functions, each 
satisfying a uniform Lipschitz condition on G, which converges strongly, 
accordingly to the norm (1 A) to f on G. 

THEOREM 10.2. There exists a boundary value f unction f* of class La 
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on G* {with respect to hyper-area on G*) such that fn converges strongly 
in La on G* to ƒ*, {fn} being any sequence as in Theorem 10.1. 

THEOREM 10.3. 7 / / * = 0 almost everywhere, the sequence {fn(x)} of 
Theorem 10.1 may be chosen so that each f n vanishes on and near G*. 

THEOREM 10.4. If x' =x'(x) is a regular Lipschitzian transforma­
tion of G into G' and if f' andf* are the transforms off andf*, thenf* 
is the boundary value function for f' on G'*. 

THEOREM 10.5. Letf{x) be of class $« and equivalent to f(x) on G. 
Then there exist sets Zk, k = l, • • • , N, each of (N—I)-dimensional 
measure zero, such that if xl is not in Z&, f{xk, Xk) is A.C. on each 
segment x^ ^XkSx^, such that (xk

f, Xk) is in G and (xk
f, x®) is on G*, 

i = l, 2, andf(xk, Xk) tends to / * ( ^ , x®) as Xk tends to x^ along this 
segment, i = l, 2, fe = l , • • • , N. 

If G is merely an arbitrary bounded region, we do not have such 
explicit results but we may follow a procedure suggested by Courant 
[ l4] . This procedure suggests the following definition: 

DEFINITION 10.1. A function f (x) of class tya on G is said to vanish 
on G* if there exists a sequence {fn{x)} of functions, each satisfying a 
uniform Lipschitz condition on G and vanishing on and near G*, such 
that \\fn— f\\—*0. Two f unctions f i and f2 of class $« are said to coincide 
on G* if their difference vanishes on G* in the above sense. 

From Theorem 10.3, it is clear that the above definition of vanish­
ing coincides with the condition that /* = 0 in the case that G is Lip­
schitzian. Using this very general terminology, we may state the fol­
lowing very important "substitution theorem" : 

THEOREM 10.6. Let f(x) be of class $« on a region G, let g(x) be of 
class tya on a subregion D of G and coincide with f {x) on D*, and let h(x) 
be defined equal to f on G — D and equal to g on D. Then h{x) is of class 
%a on G, coincides with fix) on G*, and Dxkh=Dxkf almost everywhere 
on G — D (D is open) and Dxkh=Dxkg on D wherever either exists, 
fe = l, • • • ,N. 

11. As the spaces $ a have been seen to be Banach spaces, we may 
inquire into the nature and consequences of weak convergence [15] 
in $«. In this connection, the following interesting results have been 
proved : 

THEOREM 11.1. The most general linear functional [16] F(J) defined 
on tya is of the form 
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F(f) = ƒ [ilo(*)/(*) + T,Ai{x)DXif^dx, 

where the Ai are essentially bounded if a = l and are in LB with 
a~1+/3~1 = l if a>\ {the Ai{x) are not uniquely determined by F{f) 
however). 

THEOREM 11.2. A necessary and sufficient condition that fn tend 
weakly to ƒ in $ a is that fn and DxJn tend weakly to ƒ and DXJ, respec­
tively. 

THEOREM 11.3. Weak convergence is preserved by regular Lip-
schitzian transformations. 

THEOREM 11.4. If fn tends weakly to f in G, the convergence holds on 
any subregion and ƒ is uniquely determined. 

THEOREM 11.5. If the f n all vanish on G*, ƒ vanishes on G*. 

THEOREM 11.6. If G is Lipschitzian and fn tends weakly in *$« on G 
to f, then fn tends strongly in La to f on G and the boundary value func­
tions fn* tend strongly in La on G* to ƒ*. 

THEOREM 11.7. If a>l, a necessary and sufficient condition that a 
family of f unctions {ƒ} in $« be compact {perhaps not closed) with re­
spect to weak convergence in $ a is that their norms be uniformly bounded. 
If a = l we must also have a convex f unction <t>{p\, • • • , PN) 'with 

Km 4>(>i, • • • , PN)/ I p | = + <*>, | p | = pi + ' - • + PN, 

such that 

f $[Dxlf,-.' ,DXNf]dx 
J G 

is uniformly bounded. 

THEOREM 11.8. A necessary and sufficient condition that the norms 
in tya of each function of a family be uniformly bounded is that Da{f, G) 
be uniformly bounded, each function ƒ of the family coinciding on G* 
with a function g of another family whose norms are uniformly bounded. 

THEOREM 11.9. If G is Lipschitzian, the above condition may be re­
placed by either the condition that Da{f, r) be uniformly bounded for 
some cell r in G or the condition that fE | ƒ* | ads{e) be uniformly bounded, 
E being some set open on G* and s{e) being the hyper-area set function 
on G*. 
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12. Of less interest here are Green's theorem for functions of class 
$1 on a Lipschitzian region G and theorems hinted at above (in §3) 
which show that functions of class $« with a>N are equivalent to 
continuous functions. If a S N, then this is not usually true as the ex­
amples 

—1 2 2 2 

f(x) = log log (1 + r ) , a = N, r = %x + • • • + xN, 

f(x) = r~\ a < N, 0 < j9, a(j8 + 1) < N, 

show. 

I I I . T H E EXISTENCE THEORY 

13. Having studied our admissible functions at some length, we 
can now easily derive some very general existence theorems. We con­
sider integrals 

ƒ' l l p p 

f(Xi, • ' ' , XN, Zi, ' ' ' , Zp, pi, ' • • , pN, ' • • , pi, ' ' ' , pN)dx 
G 

= I ƒ(*> z, P)dx, p) = DXjZi, 
J o 

in which f(x, z, p) is continuous all over the space of its arguments, 
is convex in p for each (x, z), and satisfies a condition 

N P 

f{x, z, p) ^ <t>(p), lim | p |~V(#) = + «o , | # | ' = Ë Ê (^i)'. 

</)(̂ ?) being convex. I t is straightforward to prove that such an inte­
gral I(z, G) is lower semicontinuous with respect to weak convergence 
in $i . From our study of the admissible functions, we see that any 
family of functions z for which I{z, G) is uniformly bounded will be 
compact with respect to weak convergence in $i , provided merely 
that the norms are uniformly bounded. This may be ensured by satis­
fying one of the conditions in Theorems 11.8 or 11.9. If this can all be 
done for a minimizing sequence, we may then pick out a subsequence 
which converges weakly in $ i to some function which is also in ^ i . 
From the lower semicontinuity of I(z, G) we may conclude that our 
limit function is a minimizing function. I t is clear that a great variety 
of existence theorems with variable as well as fixed boundary values 
can be proved with very little difficulty. For example, we may con­
clude the existence of a minimal surface part of whose boundary is 
to be a fixed Jordan arc or is to lie on a bounded closed manifold. Of 
course our existence theorems do not allow us to conclude continuity 
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of the surface on the boundary and, indeed, this is quite difficult to 
prove and may not be true in many problems. 

IV. CONTINUITY PROPERTIES OF THE MINIMIZING FUNCTIONS 

14. Without placing further restrictions on the integrand ƒ (x, z, p)y 

one cannot expect to be able to deduce many further properties of the 
solutions obtained from the above existence theory. This type of 
study seems quite difficult and is almost unexplored. Accordingly 
we have restricted ourselves to the case iV=2 and have required 
that our function (N is the previous P) 

ƒ(*, y,z\ • • • , zN
y p\ • • • , p», q\ • • • , qN) = ƒ(*, y, z, p, q) 

be of class Cd ' over the space of its arguments and that it satisfy the 
further conditions 

m,{p2 + q2) S ƒ(*, y, z, p, q) ^ M^p2 + q2), 

(14.1) N 

p2 + q2 = £ [(p{)2 + (q*)2], 0 < f»i ^ Mi, 
i = i 

m2(R)(e + v2) S fp*vfit*& + 2 / ^ ^ V + / « - ^ V 

g M2(R)(e + n*), e + y2=T, [(€02 + (M, 

(14.2) 
J N r 

V^ 2 2 2 2 F i l l 
/ -> I Jpix "T~ Jpiy i Jq*x "T~ ,/g*2/ "I | J z*x | I | Jz*y \ 
t=i L 

+ Z {ƒ** + fl<« + I ƒ** I l i a MS(R)(P2 + q), 
3-1 J 

0 < m2(£) ^ M*(R), x2+ y2+ (z1)2 H + (zN)2 ^ R2, 

where in (14.1) we assume mi and Mi to be independent of (x, 3/, 0, £, q) 
and where m^R), M2CR), and M3CR) depend only on R. 

This type of integrand, although quite restricted, is not trivial. 
For instance, the integrand obtained in the problem of Plateau on 
a Riemannian manifold (if Courant's method [17] for the ordinary 
problem of Plateau is used) is 

(i4.3) frtfC*1,--- , ^ x r ^ + ?V) , 

which satisfies all the conditions (14.1) and (14.2) on the cell of the z 
space in which the ga(z) are defined, provided merely that the part 
of the manifold thus represented is regular and the ga are of class C* ' . 
Moreover, the existence theory for such an integrand does not follow 
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from the results of Tonelli as the corresponding restrictions (3.2) for 
his methods to be extended to N dependent variables z1, • • • , zN 

would be (essentially) 

ƒ(*> y, z> P> q) ^ Mp2 + q2), m > o, 
K*, y, *\ ' ' ' , **, P\ ' • • , Pk~\ 0, ^ , • • • , pN, q\ . . • , g*-*, 

0, qk+\ • • • , qN) = 0, « = 1, • • • , N, 

such a set of equalities not being assumed in our case. In fact it seems 
very difficult to show the existence of solutions using methods which 
involve equicontinuity. 

We have used the tensor summation convention in this section, 
summing only over repeated Greek indices, and we shall continue its 
use throughout the rest of the paper. 

15. Of fundamental importance in the continuity and differentia­
bility theory are the following four theorems : 

THEOREM 15.1. If the vector function z (that is, each component z\ 
i = 1, • • • , N) is of class $2 on G and if 

(15.1) D%[z,C(P,r)] ^ M(r/aY 

for each circle C(P, r) in G, then z (is equivalent to a function which) 
satisfies a uniform Holder condition with exponent JX on each region D 
with D cGy the coefficient in which depends only on M, X, and the dis-
tance of Dfrom G*; a denotes the distance of P from G*. 

THEOREM 15.2. /ƒ, in Theorem 15.1, (15.1) holds only for circles 
with center at a fixed point P, then the average of z over circles C(P, r) 
tends to a limit z(P) as r—>0. If z vanishes on G*, then 

(15.2) \z(P)\ ^ ( J f , M , « ) , 

where J is a number depending only on the indicated quantities, S being 
the diameter of G and a being the distance of P from G*. 

THEOREM 15.3. Let z be of class $2 on G and satisfy 

(15.3) D2(z,A) ^ K-D2[H(z,A),A], K ^ l , 

for each region A in G, H(zy A) being the harmonic function in A coin­
ciding with z on A* (known to exist by our existence theorems and easily 
proved harmonic). Suppose G is bounded by a finite number of noninter-
secting simple closed curves and suppose that z coincides with a function 
of class ^2" on G and continuous on G. 

Then z is continuous on G (or equivalent to such a function). 
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THEOREM 15.4. If z is of class $2 on G and satisfies 

(15 4) D ^ C ^ r ^ ^ K.Di[H{z,C(P,r)},C(P,r)]+L-(r/ay, 

0 < X < K'1, 

for all circles in G with center at a fixed point P ( O ^ r g a ) , then z satis­
fies (15.1), the M of (15.1) depending only on K, L, and X. 

Some of these theorems have generalizations to vector functions 
of n (n^2) variables. To generalize Theorems 15.1 and 15.2, we need 
only to replace the X of (15.1) by n — 2+X, X>0. Theorem 15.3 has 
no immediate generalization for all numbers K and Theorem 15.4 
yields an exponent (n — 1)/K which is not greater than n — 2 unless K 
is restricted to be quite near to unity. As we use Theorem 15.4 to 
obtain a condition (15.1), it will thus appear to the reader that the 
methods used in this research will not generalize immediately to inte­
grands of the type described in §14 where x and y are replaced by n 
independent variables, essential use being made of the bound (15.2) 
and the continuity results of Theorem 15.1, both of which require the 
exponent w —2+X, X>0 . 

16. Now, if z minimizes our integral I(z, G) among all functions of 
class $2 which coincide with it on G*, then it follows from (14.1) that z 
satisfies the condition in Theorem 15.3 with K = Mi/mi; for if some D 
exists where this does not hold, we can define Z(x) = z(x) on G — D 
and define Z(x) = H(z, D) o n D ; then Z(x) is of class ^ 2 on G and we 
have (using Theorem 10.6) 

7(Z, G) = /(*, G-D) + l[H(z, D)9 D] 

(16.1) S I(z,G- D) + MiD2[H(z, D), D] 

< ƒ(g, G-D) + tniDfa D) S I(z, G), 

so that z would not minimize I(z, G). Thus, from the theorems in §15, 
we see that D2 [z, C(P, r) ] S (r/a)x • D*(z, G), X = mi/M1, for each circle 
in G with r ^ a , that z satisfies a uniform Holder condition, with ex­
ponent |X on closed regions interior to G, and if the boundary values 
are continuous and G is bounded by a finite number of simple closed 
curves, then z is continuous on G. 

17. To proceed with the examination of our minimizing function z, 
we next can extend Haar 's well known lemma [18] to show that z 
satisfies 

(17.1) f (Udy - fq*dx) =ff ftfxdy 
J R* J J R 
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for almost all rectangles R. If D is any simply connected subregion 
of G, we may find functions wi and Wl of class ^$2" which satisfy 

w%x — W\ = - fq*9 w\ + W\ = fp*, 

f (wUy - ^U*) = f f /^«dy, 
J R* J J R 

almost everywhere and for almost all Ron D. We also note that if D 
is any simply connected region with D c G and z is any minimizing 
function for I(z, G) (whether continuous on the boundary or not), 
then (referring to (14.2) and various lemmas in potential theory) it 
follows that 

Dt[z, DC(P, r)] ^ M,r\ D2[w, DC(P, r)] ^ M,r\ 

D2[W, DC(P, r)] S M 4 r \ X > 0, 

and (14.2) holds with R = ma,xXtVt_D [x2+y2+(zl)2 + • • • + (zN)2] 
which is bounded on such a region D. 

18. We next resort to a device due to Lichtenstein [19] and used 
by E. Hopf [4]. This consists in subtracting equation (17.1) formed 
for a rectangle (a, c\b> d) (a^xSby c^y^d) from the same equation 
for the rectangle (a+h, c; b + h, d) or the rectangle (a, c+h; ô, d + h) 
and then dividing by h. We confine ourselves to a region A such that 
A c P c S c G . If we use the first rectangle above, we find that if h is 
fixed and sufficiently small, 

L (aipUx + bipUy + dipu + gi)dy 

(18.1) — (bpiUx + dpUy + emu + k{)dx 

•ƒƒ. (dfiiUx + epiUy + fipu + li)dxdy, i = 1, • • • , N, 
R 

for almost all rectangles R in A where the coefficients are measurable 
functions and an, for instance, is given almost everywhere by the 
formula 

*u(x>y) = I fpiP]'[x + th,y,zi(x,y)+t{zi(x+h,y)-z^y)}, 
J 0 

(18.2) p\x, y) + t{pKx +h,y) - #<(*, y)}, 

q\x, y) + t{q{(x + h,y) - q*(x, y))]dt 
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and the other coefficients are given by similar formulas, and the 
ui{x1 y) are the functions 

zHx + h, y) — zHx. y) 
(18.3) u\x,y)= K-^-

h 
It is easily seen, using (14.2), (17.3), and (18.2) that there exists an 
ho > 0 and numbers rn, M, P, and /x with 0<m^M such that the co­
efficients satisfy (almost everywhere) the inequalities 

(18.4) 
f f E n * ' ! + Z {d)i+eij + \fij\ ]\dxdy^Pr^ 

ƒƒ. (g2 + **)d*dy ^ i V , M > 0, 
A-C(P.r) 

for all circles C(P, r) if \h\ <ho. By taking the rectangle (a, c+A; 
&, d+h), we obtain similar equations and the same bounds as in (18.4) 
if ho is small enough, but in this case we have 

zHx, y + h) — js t̂f, y) 
(18.5) uKx, y)= y-^--

h 

We emphasize that the bounds my M, P, and JU are independent of h if 
\h\ <ho. U D is simply connected, we can carry out simultaneously a 
similar process on the equations (17.2) and we get 

i i p p p 
vx — Vy = — \bpiUx + CipUy + eipu + k%) 9 

i i p p p 
Vy + V x = dipUx + bipUy + dipU + gi, 

I V xdy — Vydx = I I (dpitix + epiUy + fipu + k)dxdy, 

( 1 8 . 6 ) ^ J J B . 
* = 1, • • • , # , 

w*(# + A, y) — w*(#, y) 
»*(*, y) = : > 

W"(s + A, y) - W"(a, y) 
F*(*, y) = : > 

h 
almost everywhere and for almost all R. From (17.3) we have num­
bers Q and v, independent of h if | h\ <h0 such that 
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(18.7) f f (u2 + v2 + V2)dxdy ^ Qrv, v>0, 

for all C (P , r ) . 

19. In the course of this research, we have demonstrated the fol­
lowing theorem concerning the system (18.6): 

THEOREM 19.1. Any solution (u, v, V) of (18.6) which satisfies (18.7) 
on a region A is of class ty" and satisfies a uniform Holder condition 
on each region H with H c A ; the coefficient and exponent of this Holder 
condition depend only on the diameter of H, the distance of "H from A*, 
and on the numbers m, M, P, JU> Q> and v of §18. 

Thus if H is any region with H c G, we may let h—>0 in §18 and 
we then conclude (since we may then choose regions A and D with 
S c A c A c D c D c G ) that the first derivatives of z satisfy uniform 
Holder conditions on H. This result plus that of E. Hopf mentioned 
in §2 and those in §16 lead us to the final theorem: 

THEOREM 19.2. If the integrand fix, y, z, p> q) of §§13 and 14 satis­
fies the conditions of those two sections and if z minimizes I(z, G) among 
all functions of class $2 on a region G which coincide with z on G*, then 
z is of class Cfi' on any region H with H c G for each /3 <a, a being the a 
of §14. Moreover if G is bounded by a finite number of simple closed 
curves and if the boundary values of z are continuous on G*, then z is 
continuous on G. 

This result together with those of §13 completes the program an­
nounced in §1 for the important class of variational problems de­
scribed in §14. 

I t should be remarked that S. Bochner [20] has been able to solve 
the Euler differential equations for the integrand (14.3) (probably by 
means of the topological methods of Leray and Schauder [21 ]) and 
to prove certain properties of the solutions. He has been unable, how­
ever, to demonstrate the minimizing property of his solutions. The 
advantage of the procedure in this paper for this purpose is evident. 
By using direct methods, the author [22] has recently solved the 
Plateau problem (one contour case) on a Riemannian manifold of 
considerable generality, the surface thus obtained then being shown, 
using the results in this paper, to be of class C". 

V . A STUDY OF THE SYSTEMS (18 .1 ) AND (18 .6 ) 

20. The most interesting part of this research, however, is con­
cerned with the study of the systems (18.1) and (18.6) (which is 
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equivalent to (18.1) if A is simply connected) which leads to the result 
stated in Theorem 19.1. Accordingly, we shall present an outline of 
this study. 

It is easily seen that the equations (18.1), with da = e*-,- =ƒ,•ƒ = U = 0 
are the Haar equations for a function u which minimizes the integral 

C C a & a & a & a a 

J(u, A) = 1 1 \aa^xux+2ba^xUy+Ca^UyUy+2gaux+2kaUy+H)dxdy 

where H is chosen summable and just large enough to make the inte­
grand non-negative. I t is also easy to show that J{u, A) is lower semi-
continuous with respect to weak convergence in ^2 and that minimiz­
ing functions exist which coincide on A* with any given function of 
class $2 . Also if a function uQ of class $ 2 on A satisfies (18.1) with 
dij = eij=fij = li = Oy then it can easily be shown that it minimizes 
J(u, A) among all functions u of class $2 on A which coincide with uo 
on A*. If gi = ki = 0 (i = l, • • • , N)t we may show as in (16.1) that a 
minimizing function UQ satisfies (15.3) with K = M/m, so that the con­
tinuity restrictions obtained for z in §16 follow. If g and k are any 
functions of class Z,2 (whether they satisfy (18.4) or not) the above 
minimizing argument is valid. If g and k satisfy 

(20.1) f f (g2+ k2)dxdy ^ Tr*9 0 < TT < /x, 

for all circles with center at a point P in A, we conclude as in §16 that 
a solution UQ satisfies a condition (15.4) and hence a condition (15.1) 
for circles with centers at P and therefore obeys the conclusions of 
Theorem 15.2. 

If li satisfy (18.4), we may find potential functions 

(20 2) VK%, ? ) = - ƒ ƒ log [« - xY + fo - y)*]/,tt, l)dtdn 

which can be shown to be of class $2" and to satisfy a condition 
(17.3) on any region in the plane and to satisfy 

(20.3) f V\dy - V\dx = f f Udxdy 
J R* J J A-R 

for almost all rectangles R in the plane. We then can solve (18.1) with 
given boundary values with only the da, e^, and ƒ»•/ = 0 by solving it 
with h also zero and gi and ki replaced by gi— Vl

x and ki— V%
v. The 

solution is easily shown to be unique. 
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21. We now let G be an arbitrary bounded region and let % de­
note the linear subspace of $2 consisting of functions u in $2 which 
vanish on G*. For such functions u, we define the linear operator Tu 
as the unique solution U in 352 of 

(aipUx + bipUy + di$u )dy — (b^Ux + c^Uy + e^u )dx 
R* 

(d{nux + epiUy + fou )dxdy. -ƒƒ. 
It can be shown that Tu is completely continuous over 3S2 (not $ 2 

unless A is restricted) and even carries any function u in $82 into a 
function U which is continuous on A andean be bounded as in (15.2), 
the X there being any number less than §ju (/x in (18.4) and the M 
depending on the norm of u and of the operator T). Then from the 
Riesz theory [23 ] of generalized integral equations, we can conclude 
that the transformation 

(21.1) u - p T u = <$> 

has a linear inverse if p is not one of a set of isolated characteristic 
values. If p is not a characteristic value, we can solve the equations 
(18.1), with the parameter p introduced as a multiplier of all the 
dij, eu, or fi j , as follows: First let cj> be the solution of (18.1) with p = 0 
and then solve (21.1) for u in terms of <j>\ the function u so obtained 
is immediately seen to be the desired solution. In doing this, the gi 
and ki may be merely functions of class L2 on A, but we assume that 
the dij, eu, fa, and U satisfy (18.4). As in §20, if g and k satisfy (20.1) 
at a point P, we may draw similar conclusions, where the bound for 
\ü{P) I given in (15.2) depends only on the quantities m, M, P, IJL, T, 
IT, S, a, the norm of T, and the norm of the inverse operator of (21.1), 
ô and a having their significance in §15. 

22. Let us now suppose that p is not a characteristic value and 
let PQ be any point in A. Let us consider the solution u of (18.1) where 
1 = 0 and g and k are in L2 on A — C(Po, a) and zero in C(Po, cr) ; such 
functions satisfy any condition of the type (20.1) for circles C(Po, r). 
Clearly the value of ü(Po) is a linear functional defined on the space 
L2[A — C(P0, <?)] for each a>0. We therefore conclude [24] the exist­
ence of functions Af(xo, 3>o ; x, y) and A^O&o, 3>oî x, y) such that 

ü\xo, yQ) = I I (AÎ gfi + A2 k$)dxdy. 

From the way these Ajf arise, we can conclude that there exist f une-
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tions Gij'(xo, y o', x, y) of class ty{ over A and of class fy" on À — C(Po, o") 
for each <7>0 such that G£=A?, Gjf = A £ . I t can also be shown that 
the Gij possess other properties which lead us to call them the Green's 
matrix for (18.1). Moreover if the g and k satisfy (20.1) for every P 
and r, we conclude that the continuous representative ü of the solu­
tion u of (18.1) in 3S2 is represented everywhere by 

(22.1) S*(*o, yo) = ƒ ƒ (GHgf> + G*kp + G\)dxdy, i = 1, • • • , N, 

and ü{ satisfies a uniform Holder condition on any region H with ~R 
interior to A, this Holder condition depending only on the distance 
of H from A*, the quantities w, M, P , /z, T, x, a, and any upper 
bounds for S and the norms T and the inverse in (21.1). 

23. Finally, if (u, v, V) is any solution of (18.6) on a circle C(Pi, b) 
which satisfies (18.7) there, we can, if p is not characteristic, express u 
in a circle C(Pi, c) with c<b in the form 

(23.1) *'(*o, yo) = f f (GUgfi + G*J% + GX&k)dxdy, 
J •/ C(Pi,6)-C(Pi,d) 

(*o, yo) e C(Pi, c), c < J < b, 
in which 

1 / 3 1 / 3 1 / 3 2 / 3 2 0 2 £ 

gi = ^4^w + - # ^ + CipV j ki = Aipu + Bipv + dfiV , 
3 / 3 3 / 3 3 / 3 

/,- = Aipu + Bipv + CipV 

where the A%, B%, and C% are bounded and measurable and inde­
pendent of (xo, yo). Also there exists a number 5 0 >0 which depends 
only on m, M, P , and ju- such that if S ^ 50, the norm of T is less than 
or equal to \ and the norm of the inverse of (21.1) is less than or equal 
to 2 for all p ^ l . Thus p = l is surely not a characteristic value if 
6 g | ô 0 and the representation (23.1) satisfies a uniform Holder con­
dition in C(Pi, c) which depends only on w, M, P , /x> Q> v (of (18.7)), 
and b — c, if ô^ôo. Thus Theorem 19.1 then follows, for, if the solu­
tion is given on A and H is any subregion with H c A, we may choose 
b and c so that H can be covered by a finite number of circles C(Pi, c) 
where C{P» b) belongs to A for each i. 
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